設(shè)m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下列為真命題的是( 。
A、若α⊥β,m⊥α,則m∥β
B、若α⊥γ,β⊥γ,則α∥β
C、若m⊥α,n∥m,則n⊥α
D、若m∥α,n∥α,則m∥n
考點:平面與平面之間的位置關(guān)系,空間中直線與直線之間的位置關(guān)系,空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用線面平行以及面面平行的判定定理以及性質(zhì)定理對四個選項分別分析解答.A:漏掉了m?β.B:可以舉出墻角的例子.C根據(jù)線線垂直的判定可得結(jié)論是正確的.D:漏掉了m與n相交、異面的情況.
解答: 解:對于A:直線m也可以在平面β內(nèi).
對于B:α與β也可以相交.可以舉出墻角的例子.
對于C:根據(jù)線面垂直的判定和性質(zhì)可得結(jié)論是正確的.
對于D:m與n可能平行也可能相交也可能異面.
故選C.
點評:本題考查了空間線面關(guān)系、面面關(guān)系以及線線關(guān)系;解決此類問題的關(guān)鍵是熟練掌握空間中線面之間的相互平行、相互垂直的判定定理與性質(zhì)定理,熟記相關(guān)的結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標系中,O為原點,射線OA與x軸正半軸重合,射線OB是第一象限角平分線.在OA上有點列A1,A2,A3,…,An,…,在OB上有點列B1,B2,B3,…,Bn,…已知
OAn+1
=
4
5
OAn
,A1(5,0),|
OB1
|=
2
,|
OBn+1
|=|
OBn
|+
2

(1)求點A2,B1的坐標;
(2)求
OAn
,
OBn
的坐標;
(3)求△AnOBn面積的最大值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
1-log2x
+
1-x2
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標系xoy中,若曲線y=eax在點(0,1)處的切線為y=2x+m,則a+m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C
3
7
+
A
3
6
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

加工一種零件需要三道工序,其中只會第一道工序的有4人,只會第二道工序的有2人,只會第三道工序的有3人,現(xiàn)在從每道工序中各選一人加工這種零件,共有( 。┓N不同的選派方法.
A、9B、12C、24D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
x2-4x+3<0
x2+2x-8>0
的解集是A,且存在x0∈A,使得不等式x2-ax+4>0成立.
(Ⅰ)求集合A;
(Ⅱ)求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足:存在非零常數(shù)a,使f(x)=-f(2a-x),則稱f(x)為“準奇函數(shù)”,下列函數(shù)中是“準奇函數(shù)”的是( 。
A、f(x)=x2
B、f(x)=(x-1)3
C、f(x)=ex-1
D、f(x)=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
3x-a
3x+1
是奇函數(shù),則f(1)=
 

查看答案和解析>>

同步練習(xí)冊答案