【題目】以下四個命題:
①“若,則”的逆否命題為真命題
②“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件
③若為假命題,則,均為假命題
④對于命題:,,則為:,
其中真命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中心在原點,對稱軸為坐標(biāo)軸的雙曲線與圓:有公共點,且圓在點處的切線與雙曲線的一條漸近線平行,則該雙曲線的實軸長為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天壇公園是明、清兩代皇帝“祭天”“祈谷”的場所.天壇公園中的圜丘臺共有三層(如圖1所示),上層壇的中心是一塊呈圓形的大理石板,從中心向外圍以扇面形石(如圖2所示).上層壇從第一環(huán)至第九環(huán)共有九環(huán),中層壇從第十環(huán)至第十八環(huán)共有九環(huán),下層壇從第十九環(huán)至第二十七環(huán)共有九環(huán);第一環(huán)的扇面形石有9塊,從第二環(huán)起,每環(huán)的扇面形石塊數(shù)比前一環(huán)多9塊,則第二十七環(huán)的扇面形石塊數(shù)是______;上、中、下三層壇所有的扇面形石塊數(shù)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓關(guān)于直線對稱.
(1)求圓的方程;
(2)過點作兩條相異直線分別與圓相交于、兩點,若直線、的傾斜角互補,問直線與直線是否垂直?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè)是函數(shù)的極值點,求的值,并求的單調(diào)區(qū)間;
(2)若對任意,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的方程為.
(1)當(dāng)時,試確定曲線的形狀及其焦點坐標(biāo);
(2)若直線交曲線于點、,線段中點的橫坐標(biāo)為,試問此時曲線上是否存在不同的兩點、關(guān)于直線對稱?
(3)當(dāng)為大于1的常數(shù)時,設(shè)是曲線上的一點,過點作一條斜率為的直線,又設(shè)為原點到直線的距離,分別為點與曲線兩焦點的距離,求證是一個定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形沿對角線折成直二面角,下列結(jié)論:①異面直線與所成的角為;②;③是等邊三角形;④二面角的平面角正切值是;其中正確結(jié)論是______.(寫出你認(rèn)為正確的所有結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在平面圖為矩形的操場ABCD內(nèi)進(jìn)行體操表演,其中AB=40,BC=15,O為AB上一點,且BO=10,線段OC、OD、MN為表演隊列所在位置(M、N分別在線段OD、OC上),△OCD內(nèi)的點P為領(lǐng)隊位置,且P到OC、OD的距離分別為、,記OM=d,我們知道當(dāng)△OMN面積最小時觀賞效果最好.
(1)當(dāng)d為何值時,P為隊列MN的中點;
(2)怎樣安排M的位置才能使觀賞效果最好?求出此時△OMN的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com