(2013•北京)直線l過拋物線C:x2=4y的焦點且與y軸垂直,則l與C所圍成的圖形的面積等于( 。
分析:先確定直線的方程,再求出積分區(qū)間,確定被積函數(shù),由此利用定積分可求直線l與拋物線圍成的封閉圖形面積.
解答:解:拋物線x2=4y的焦點坐標為(0,1),
∵直線l過拋物線C:x2=4y的焦點且與y軸垂直,
∴直線l的方程為y=1,
y=1
x2=4y
,可得交點的橫坐標分別為-2,2.
∴直線l與拋物線圍成的封閉圖形面積為
2
-2
(1-
x2
4
)dx
=( x-
1
12
x3
)|
 
2
-2
=
8
3

故選C.
點評:本題考查封閉圖形的面積,考查直線方程,解題的關(guān)鍵是確定直線的方程,求出積分區(qū)間,確定被積函數(shù).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•北京)設(shè)l為曲線C:y=
lnxx
在點(1,0)處的切線.
(Ⅰ)求l的方程;
(Ⅱ)證明:除切點(1,0)之外,曲線C在直線l的下方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州二模)經(jīng)過點F (0,1)且與直線y=-1相切的動圓的圓心軌跡為M點A、D在軌跡M上,且關(guān)于y軸對稱,過線段AD (兩端點除外)上的任意一點作直線l,使直線l與軌跡M 在點D處的切線平行,設(shè)直線l與軌跡M交于點B、C.
(1)求軌跡M的方程;
(2)證明:∠BAD=∠CAD;
(3)若點D到直線AB的距離等于
2
2
|AD|
,且△ABC的面積為20,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•北京)直線y=kx+m(m≠0)與橢圓W:
x24
+y2=1
相交于A,C兩點,O是坐標原點.
(Ⅰ)當點B的坐標為(0,1),且四邊形OABC為菱形時,求AC的長;
(Ⅱ)當點B在W上且不是W的頂點時,證明:四邊形OABC不可能為菱形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧德模擬)已知橢圓Γ:
x2
a2
+
y2
b2
=1
(a>b>0)過點A(0,2),離心率為
2
2
,過點A的直線l與橢圓交于另一點M.
(I)求橢圓Γ的方程;
(II)是否存在直線l,使得以AM為直徑的圓C,經(jīng)過橢圓Γ的右焦點F且與直線 x-2y-2=0相切?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案