分析 先將2x+y=3化為1,利用“1”的代換和基本不等式求出$\frac{1}{x}+\frac{1}{y}$的最小值.
解答 解:由2x+y=3得,$\frac{1}{3}$(2x+y)=1,
因?yàn)閤>0,y>0,
所以$\frac{1}{x}+\frac{1}{y}$=$\frac{1}{3}$(2x+y)($\frac{1}{x}+\frac{1}{y}$)
=$\frac{1}{3}$(3+$\frac{y}{x}+\frac{2x}{y}$)$≥\frac{1}{3}(3+2\sqrt{\frac{y}{x}•\frac{2x}{y}})$=$\frac{1}{3}(3+2\sqrt{2})$,
當(dāng)且僅當(dāng)$\frac{y}{x}=\frac{2x}{y}$時(shí)取等號(hào),
即$\frac{1}{x}+\frac{1}{y}$的最小值是$\frac{1}{3}(3+2\sqrt{2})$,
故答案為:$\frac{1}{3}(3+2\sqrt{2})$.
點(diǎn)評(píng) 本題考查基本不等式在求最值中的應(yīng)用,以及利用“1”的代換,考查轉(zhuǎn)化思想,化簡(jiǎn)、變形能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,2) | B. | [$\frac{4}{3}$,2) | C. | ($\frac{4}{3}$,2) | D. | [$\frac{4}{3}$,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)一定存在最大值 | B. | 函數(shù)f(x)一定存在最小值 | ||
C. | 函數(shù)f(x)一定不存在最大值 | D. | 函數(shù)f(x)一定不存在最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com