5.若f(x)=(a+1)x2-2(a-1)x+3(a-1)<0恒成立,求a的取值范圍.

分析 本題是類(lèi)似二次函數(shù)在R上的恒成立求參數(shù)問(wèn)題,注意二次項(xiàng)系數(shù)為零的情況.

解答 解:①當(dāng)a+1=0即a=-1時(shí),不等式即為:4x-6<0,
∴x<3,與題意不合,故a≠-1;
②當(dāng)a+1≠0時(shí),只需 $\left\{\begin{array}{l}{a+1<0}\\{△<0}\end{array}\right.$,解得a<-2,
綜合①②有,a<-2.

點(diǎn)評(píng) 本題是考查類(lèi)似二次函數(shù)在R上的恒成立問(wèn)題,注意二項(xiàng)系數(shù)為零的情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆江西南昌新課標(biāo)高三一輪復(fù)習(xí)訓(xùn)練三數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)

(1)在區(qū)間上畫(huà)出函數(shù)的圖象;

(2)設(shè)集合,.試判斷集合之間的關(guān)系,并給出證明;

(3)當(dāng)時(shí),求證:在區(qū)間上,的圖象位于函數(shù)圖象的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆安徽淮北十二中高三上月考二數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知集合,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.一個(gè)機(jī)器人每一秒鐘前進(jìn)一步或后退一步,程序設(shè)計(jì)師設(shè)計(jì)的程序是讓機(jī)器人以先前進(jìn)3步,然后再后退2步的規(guī)律移動(dòng).如果將機(jī)器人放在數(shù)軸的原點(diǎn),面向正的方向在數(shù)軸上移動(dòng)(1步的距離為1個(gè)單位長(zhǎng)度).令P(n)表示第n秒時(shí)機(jī)器人所在位置的坐標(biāo),且記P(0)=0,則下列結(jié)論中錯(cuò)誤的是(  )
A.P(3)=3B.P(5)=1C.P(2007)>P(2006)D.P(2003)<P(2006)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆安徽淮北十二中高三上月考二數(shù)學(xué)(理)試卷(解析版) 題型:解答題

設(shè)為奇函數(shù),為常數(shù).

(1)求的值;

(2)判斷函數(shù)上的單調(diào)性,并說(shuō)明理由;

(3)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在數(shù)列{an}中,
(1)已知a1=1,an+1-an=2,求數(shù)列{an}的通項(xiàng)公式;
(2)已知a1=1,且nan=(n+1)an-1(n≥2),試求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且$\left\{{\frac{S_n}{n}}\right\}$是等差數(shù)列,已知a1=1,$\frac{S_2}{2}+\frac{S_3}{3}+\frac{S_4}{4}$=12.
(Ⅰ)求$\left\{{\frac{S_n}{n}}\right\}$的通項(xiàng)公式;
(Ⅱ)求{an}的通項(xiàng)公式an
(Ⅲ)當(dāng)n≥2時(shí),an+1+$\frac{λ}{a_n}$≥λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在區(qū)間[-$\frac{3}{2}$,$\frac{3}{2}$]上隨機(jī)取一個(gè)數(shù)x,使cos$\frac{πx}{3}$的值介于$\frac{1}{2}$到1之間的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在10個(gè)球中有6個(gè)紅球和4個(gè)白球(各不相同),不放回地依次摸出2個(gè)球,在第一次摸出紅球的條件下,第2次也摸到紅球的概率為( 。
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{1}{10}$D.$\frac{5}{9}$

查看答案和解析>>

同步練習(xí)冊(cè)答案