10.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥平面ABCD,且AB=PD=2,則這個(gè)四棱錐的內(nèi)切球半徑是2-$\sqrt{2}$.

分析 由題意球心到各個(gè)面的距離均相等,聯(lián)想到用體積法求解.

解答 解:設(shè)球心為S,連SA、SB、SC、SD、SP,則把此四棱錐分為五個(gè)棱錐,設(shè)它們的高均為R
∵VP-ABCD=VS-PDA+VS-PDC+VS-ABCD+VS-PAB+VS-PBC
∴$\frac{1}{3}×2×2×2$=$\frac{1}{3}R(2×\frac{1}{2}×2×2+2×\frac{1}{2}×2×2\sqrt{2})$,
∴R=2-$\sqrt{2}$.
故答案為:2-$\sqrt{2}$.

點(diǎn)評(píng) 本題主要考查棱錐的性質(zhì)以及內(nèi)切外接的相關(guān)知識(shí)點(diǎn).“內(nèi)切”和“外接”等有關(guān)問題,首先要弄清幾何體之間的相互關(guān)系,主要是指特殊的點(diǎn)、線、面之間關(guān)系,然后把相關(guān)的元素放到這些關(guān)系中解決問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,BC=$\sqrt{2}$,且PC⊥CD,BC⊥PA,E是PB的中點(diǎn).
(1)求證:平面PBC⊥平面EAC;
(2)若二面角P-AC-E的正弦值為$\frac{{\sqrt{3}}}{3}$,求直線PA與平面EAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若直線l:y=k(x+1)與圓C:(x-1)2+y2=1恒有公共點(diǎn),則k的取值范圍是$-\frac{{\sqrt{3}}}{3}≤k≤\frac{{\sqrt{3}}}{3}$,,直線l的傾斜角的取值范圍是$θ∈[{0,\frac{π}{6}}]∪[{\frac{5π}{6},π})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在拋物線x2=2py(p>0)上,縱坐標(biāo)為2的點(diǎn)到拋物線焦點(diǎn)的距離為5,則p=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=sin(x+2φ)-2sinφcos(x+φ)的最大值為( 。
A.2B.$\frac{3}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,設(shè)圓C的方程為(x-a)2+(y-2a+4)2=1.
(Ⅰ)若圓C經(jīng)過A(3,3)與B(4,2)兩點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)點(diǎn)P(0,3),若圓C上存在點(diǎn)M,使|MP|=2|MO|,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=(1-x)ex
(1)證明:當(dāng)x>0時(shí),f(x)<f(-x);
(2)若方程f(x)=a(1+x2)有兩個(gè)不相等的實(shí)根x1,x2,求實(shí)數(shù)a的取值范圍,并證明:x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知A,B是拋物線y2=4x上異于原點(diǎn)O的兩點(diǎn),且$\overrightarrow{OA}•\overrightarrow{OB}=0$
(1)求證:直線AB恒過定點(diǎn)(4,0)
(2)若將$\overrightarrow{OA}•\overrightarrow{OB}=0$改為$\overrightarrow{OA}•\overrightarrow{OB}=m(m≠0)$,判斷直線AB是否經(jīng)過一定點(diǎn).若是,請(qǐng)寫出m=-2時(shí)該定點(diǎn)的坐標(biāo)(直接寫出結(jié)論即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C1:x2+y2=1
(1)設(shè)l與C1相交于A,B兩點(diǎn),求|AB|.
(2)若曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的$\frac{1}{2}$,縱坐標(biāo)壓縮為原來的$\frac{{\sqrt{3}}}{2}$,得到曲線C2,設(shè)點(diǎn)P是曲線C2上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案