如圖,ABCD是邊長(zhǎng)為2的正方形,,ED=1,//BD,且.
(1)求證:BF//平面ACE;
(2)求證:平面EAC平面BDEF;
(3)求二面角B-AF-C的大小.
(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).

試題分析:(1)記的交點(diǎn)為,連接,則可證,又,,故平面;      
(2)因⊥平面,得,又是正方形,所以,從而平面,又 ,故平面平面
(3)過(guò)點(diǎn)于點(diǎn),連接,則可證為二面角的平面角.在中,可求得,又,故,∴,即二面角的大小為;
證明:(1)記的交點(diǎn)為,連接,則
所以,又,所以
所以四邊形是平行四邊形
所以,
,
平面;

(2)因⊥平面,所以,
是正方形,所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051203491447.png" style="vertical-align:middle;" />面,,
所以平面,
,
故平面平面
(3)過(guò)點(diǎn)于點(diǎn),連接,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051203771647.png" style="vertical-align:middle;" />,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051203849420.png" style="vertical-align:middle;" />面,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051203912561.png" style="vertical-align:middle;" />
所以
所以

所以
所以,即得為二面角的平面角.
中,可求得,
,故,
,即二面角的大小為;         
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是,D是AC的中點(diǎn).
 
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大;
(3)求直線AB1與平面A1BD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面內(nèi),,,P為平面外一個(gè)動(dòng)點(diǎn),且PC=,

(1)問(wèn)當(dāng)PA的長(zhǎng)為多少時(shí),
(2)當(dāng)的面積取得最大值時(shí),求直線BC與平面PAB所成角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知平面α,β和直線m,給出下列條件:①m∥α;②m⊥α;③m?α;④α⊥β;⑤α∥β.
(1)當(dāng)滿足條件________時(shí),有m∥β;
(2)當(dāng)滿足條件________時(shí),有m⊥β(填所選條件的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱柱中,側(cè)棱垂直于底面,,,、分別為、的中點(diǎn).
(1)求證:平面平面;
(2)求證:平面
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正方體AC1中,若點(diǎn)P在對(duì)角線AC1上,且P點(diǎn)到三條棱CD 、A1D1、 BB1的距離都相等,則這樣的點(diǎn)共有  (   )
A.1 個(gè)        B.2 個(gè)      C.3 個(gè)         D.無(wú)窮多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在底面邊長(zhǎng)為的正方形的四棱錐中,已知,且,則直線與平面所成的角大小為                

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C-AB-D的余弦值為,M,N分別是AC,BC的中點(diǎn),則EM,AN所成角的余弦值等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知m,n是兩條不同直線,是兩個(gè)不同平面,以下命題正確的是(   )
A.若
B.若
C.若
D.若

查看答案和解析>>

同步練習(xí)冊(cè)答案