復(fù)數(shù)z=
2
-1+i
的虛部為( 。
A、-1B、-iC、1D、i
考點(diǎn):復(fù)數(shù)的基本概念
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則和虛部的意義即可得出.
解答: 解:復(fù)數(shù)z=
2
-1+i
=
-2(1+i)
(1-i)(1+i)
=
-2(1+i)
2
=-1-i,其虛部為-1.
故選:A.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則和虛部的意義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=12,S12>0,S13<0.則公差d的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-1,2)
,
b
=(3,m),m∈R,則“m=-6”是“
a
∥(
a
+
b
)
”的( 。
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是( 。
A、“p∨q為真”是“p∧q為真”的充分不必要條件
B、已知隨機(jī)變量X~N(2,σ2),且P(X≤4)=0.84,則P(X≤0)=0.16
C、若a,b∈[0,1],則不等式a2+b2
1
4
成立的概率是
π
4
D、已知空間直線a,b,c,若a⊥b,b⊥c,則a∥c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則其側(cè)面的直角三角形的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在某點(diǎn)B處測(cè)得建筑物AE的頂端A的仰角為θ,沿BE方向前進(jìn)30m,至點(diǎn)C處測(cè)得頂端A的仰角為2θ,再繼續(xù)前進(jìn)10
3
m至D點(diǎn),測(cè)得頂端A的仰角為4θ,求建筑物AE的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a+b=10,cosC是方程2x2+9x+4=0的一個(gè)根,求△ABC周長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-x-2>0},B={x|mx+1<0},若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=2sin(2x+
π
3
)+4.設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,且
cosB
sinBcosC
=
1
2sinA-sinC
,求f(x)在(0,B]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案