【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當x∈[﹣1,0]時,函數(shù)解析式為
(1)求f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最值.

【答案】
(1)解:設x∈[0,1],則﹣x∈[﹣1,0].∴f(x)= =4x﹣2x

又∵f(﹣x)=﹣f(x)=﹣(4x﹣2x)∴f(x)=2x﹣4x

所以,f(x)在[0,1]上的解析式為f(x)=2x﹣4x


(2)解:當x∈[0,1],f(x)=2x﹣4x=﹣(2x2+2x,

∴設t=2x(t>0),則y=﹣t2+t∵x∈[0,1],∴t∈[1,2]

當t=1時x=0,f(x)max=0;當t=2時x=1,f(x)min=﹣2


【解析】(1)設x∈[0,1],則﹣x∈[﹣1,0],利用條件結(jié)合奇函數(shù)的定義求f(x)在[0,1]上的解析式;(2)設t=2x(t>0),則y=﹣t2+t,利用二次函數(shù)的性質(zhì)求f(x)在[0,1]上的最值.
【考點精析】本題主要考查了函數(shù)奇偶性的性質(zhì)的相關知識點,需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費xi和年銷售量yii=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點圖及下面一些統(tǒng)計量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中 , .
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線vαβu的斜率和截距的最下二乘估計分別為 , .
(1)根據(jù)散點圖判斷,yabx 哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤zx,y的關系為z=0.2yx.根據(jù)(2)的結(jié)果回答下列問題:
①年宣傳費x=49時,年銷售量及年利潤的預報值時多少?
②年宣傳費x為何值時,年利潤的預報值最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】Rt△ABC的斜邊BC在平面α內(nèi),則△ABC的兩條直角邊在平面α內(nèi)的正射影與斜邊組成的圖形只能是(
A.一條線段
B.一個銳角三角形或一條線段
C.一個鈍角三角形或一條線段
D.一條線段或一個鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校畢業(yè)典禮由6個節(jié)目組成,考慮整體效果,對節(jié)目演出順序有如下要求:節(jié)目甲必須排在前三位,且節(jié)目丙、丁必須排在一起,則該校畢業(yè)典禮節(jié)目演出順序的編排方案共有

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線與橢圓交于兩點,與軸交于點, 為弦的中點,直線分別與直線和直線交于兩點.

(1)求直線的斜率和直線的斜率之積;

(2)分別記的面積為,是否存在正數(shù),使得若存在,求出的取值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角三角形中,若,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個頂點A、B、C及平面內(nèi)一點P滿足 ,下列結(jié)論中正確的是( )
A.P在△ABC的內(nèi)部
B.P在△ABC的邊AB上
C.P在AB邊所在直線上
D.P在△ABC的外部

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1= ,AB=1,AD=2,E為BC的中點,點M為棱AA1的中點.

(1)證明:DE⊥平面A1AE;
(2)證明:BM∥平面A1ED.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對任意的x∈[﹣1,2],都有x2﹣2x+a≤0(a為常數(shù)),則a的取值范圍是(
A.(﹣∞,﹣3]
B.(﹣∞,0]
C.[1,+∞)
D.(﹣∞,1]

查看答案和解析>>

同步練習冊答案