在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且a=
3
λ,b=
5
λ(λ>0)
,A=45°,則滿足條件的三角形個(gè)數(shù)是( 。
分析:由a,b及sinA的值,利用正弦定理求出sinB的值,再由B為三角形的內(nèi)角,得到滿足條件的三角形個(gè)數(shù)是2個(gè).
解答:解:∵a=
3
λ,b=
5
λ(λ>0)
,A=45°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
5
λsinA
3
λ
=
30
6
∈(0,1),
又B為三角形的內(nèi)角,
則滿足條件的三角形個(gè)數(shù)是2個(gè).
故選C
點(diǎn)評(píng):此題考查了正弦定理,以及正弦函數(shù)的圖象與性質(zhì),熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案