分析 求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系進(jìn)行求解,注意要對(duì)a進(jìn)行討論.
解答 解:當(dāng)a=0時(shí),f(x)=2x,為增函數(shù),滿足在區(qū)間[0,1]上單調(diào)遞增,
當(dāng)a<0時(shí),f(x)=2x-$\frac{a}{{2}^{x}}$,f′(x)=2xln2+$\frac{aln2}{{2}^{x}}$,
若f(x)在區(qū)間[0,1]上單調(diào)遞增,則f′(x)≥0恒成立,
即2xln2+$\frac{aln2}{{2}^{x}}$≥0,即a≥-(2x)2=-4x,
∵0≤x≤1,∴1≤4x≤4,-4≤-4x≤-1,
則a≥-1,則-1≤a<0,
當(dāng)a>0時(shí),y=2x-$\frac{a}{{2}^{x}}$為增函數(shù),
由y=2x-$\frac{a}{{2}^{x}}$=0得(2x)2=22x=a,
則2x=log2a,即x=$\frac{1}{2}$log2a,
即f(x)=|2x-$\frac{a}{{2}^{x}}$|,在(-∞,$\frac{1}{2}$log2a]為減函數(shù),在[$\frac{1}{2}$log2a,+∞)上為增函數(shù)
若f(x)區(qū)間[0,1]上單調(diào)遞增,則$\frac{1}{2}$log2a≤0,即log2a≤0,即0<a≤1,
綜上,實(shí)數(shù)a的取值范圍是[-1,1],
故答案為:[-1,1].
點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的應(yīng)用,利用分類討論,結(jié)合函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.綜合考查導(dǎo)數(shù)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{6}-\sqrt{2}}{2}$ | B. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | C. | $\frac{\sqrt{3}-1}{2}$ | D. | $\frac{2-\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com