3.函數(shù)f(x)=$\sqrt{x}$在[0,+∞)是( 。
A.減函數(shù)B.增函數(shù)C.奇函數(shù)D.偶函數(shù)

分析 直接利用函數(shù)的單調性判斷即可.

解答 解:函數(shù)f(x)=$\sqrt{x}$在[0,+∞)是增函數(shù).
故選:B.

點評 本題考查基本函數(shù)的單調性,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知sin(3π+α)=2sin($\frac{3π}{2}$+α),求下列各式的值.
(1)$\frac{sinα-4cosα}{5sinα+2cosα}$;            
(2)sin2α+sin2α+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設有兩條直線a、b和三個平面α、β、γ,則下列命題中錯誤的是( 。
A.若a∥α,a∥b,b?α,則b⊥αB.若α∥β,β∥γ,則α∥γ
C.若a⊥α,a⊥b,b?α,則b∥αD.若α⊥γ,β∥γ,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知x,y滿足約束條件$\left\{\begin{array}{l}{y≤1}\\{x+y-2≥0}\\{x-y-1≤0}\end{array}\right.$,則目標函數(shù)z=2x-y的最小值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在△ABC中,角A,B,C所對的邊分別是a,b,c,若$\overrightarrow{AC}?\overrightarrow{AB}=4$,且$\frac{{a}^{2}-{(b+c)}^{2}}{bc}=1$,則△ABC的面積等于( 。
A.$5\sqrt{3}$B.$4\sqrt{3}$C.$2\sqrt{3}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在正項等比數(shù)列中a3=125,a1=25,則公比q=(  )
A.5B.3C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知$f(x)=\left\{\begin{array}{l}{2^x}-1+k(1-{a^2}),x≥0\\{x^2}-2x+{(2-a)^2},x<0\end{array}\right.,a∈R$,對任意非零實數(shù)x1,存在唯一的非零實數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則實數(shù)k的取值范圍是( 。
A.0≤k≤3B.k≥3C.k≤0或k≥3D.k≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知向量$\overrightarrow a=({-3,1,\sqrt{6}})$,則與向量$\overrightarrow a$共線的單位向量為( 。
A.$({-3,1,\sqrt{6}})$和$({3,-1,-\sqrt{6}})$B.$({-\frac{3}{4},\frac{1}{4},\frac{{\sqrt{6}}}{4}})$
C.$({-\frac{3}{4},\frac{1}{4},\frac{{\sqrt{6}}}{4}})$和$({\frac{3}{4},-\frac{1}{4},-\frac{{\sqrt{6}}}{4}})$D.$({3,-1,-\sqrt{6}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}、{bn}滿足:a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{_{n}}{1-{{a}_{n}}^2}$
(1)證明數(shù)列{$\frac{1}{_{n}-1}$}是等差數(shù)列   
(2)求數(shù)列{bn}的通項公式;
(3)若bn>k對任意的n∈N*恒成立,求k的取值范圍.

查看答案和解析>>

同步練習冊答案