已知函數(shù)處存在極值.
(1)求實(shí)數(shù)的值;
(2)函數(shù)的圖像上存在兩點(diǎn)A,B使得是以坐標(biāo)原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在軸上,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),討論關(guān)于的方程的實(shí)根個(gè)數(shù).

(1) .(2)的取值范圍是.(3)①當(dāng)時(shí),方程有兩個(gè)實(shí)根;②當(dāng)時(shí),方程有三個(gè)實(shí)根;③當(dāng)時(shí),方程有四個(gè)實(shí)根.

解析試題分析:(1)求導(dǎo)得,將代入解方程組即得.(2) 由(1)得根據(jù)條件知A,B的橫坐標(biāo)互為相反數(shù),不妨設(shè).接下來根據(jù)大于等于1和小于1分別求解.(3)由方程
,顯然0一定是方程的根,所以僅就時(shí)進(jìn)行研究,這時(shí)方程等價(jià)于,構(gòu)造函數(shù),利用導(dǎo)數(shù)作出的圖象即可得方程的要的個(gè)數(shù).
試題解析:(1)當(dāng)時(shí),.      1分
因?yàn)楹瘮?shù)處存在極值,所以
解得.      4分
(2) 由(I)得
根據(jù)條件知A,B的橫坐標(biāo)互為相反數(shù),不妨設(shè).
,則,
是直角得,,即,
.此時(shí)無解;      6分
,則. 由于AB的中點(diǎn)在軸上,且是直角,所以B點(diǎn)不可能在軸上,即. 同理有,即,.
因?yàn)楹瘮?shù)上的值域是
所以實(shí)數(shù)的取值范圍是.      8分
(3)由方程,知,可知0一定是方程的根, 10分
所以僅就時(shí)進(jìn)行研究:方程等價(jià)于
構(gòu)造函數(shù)
對(duì)于部分,函數(shù)的圖像是開口向下的拋物線的一部分,
當(dāng)時(shí)取得最大值,其值域是;
對(duì)于部分,函數(shù),由
知函數(shù)上單調(diào)遞增.
所以,①當(dāng)時(shí),方程有兩個(gè)實(shí)根;
②當(dāng)時(shí),方程有三個(gè)實(shí)根;
③當(dāng)時(shí),方程有四個(gè)實(shí)根.       14分
考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、方程的根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a>0,函數(shù)f(x)=ax2-ln x.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=時(shí),證明:方程f(x)=f 在區(qū)間(2,+∞)上有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若曲線經(jīng)過點(diǎn),曲線在點(diǎn)處的切線與直線垂直,求的值;
(2)在(1)的條件下,試求函數(shù)為實(shí)常數(shù),)的極大值與極小值之差;
(3)若在區(qū)間內(nèi)存在兩個(gè)不同的極值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013·重慶卷)設(shè)f(x)=a(x-5)2+6ln x,其中a∈R,曲線yf(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極小值;
(2)當(dāng)時(shí),過坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求實(shí)數(shù)的值;
(3)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為當(dāng)時(shí),若內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點(diǎn)”.當(dāng)時(shí),試問函數(shù)是否存在“轉(zhuǎn)點(diǎn)”.若存在,請(qǐng)求出“轉(zhuǎn)點(diǎn)”的橫坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x∈(1,+∞).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)函數(shù)f(x)在區(qū)間[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),試確定函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案