分析 由已知及余弦定理可得c=b(1+2cosA),從而可求$\frac{a}$=$\sqrt{2+2cosA}$,由A的范圍,利用余弦函數(shù)的圖象和性質(zhì)可求$\frac{a}$的范圍.
解答 解:∵△ABC中,a2=b2+bc,
又∵由余弦定理可得:a2=b2+c2-2bccosA,
∴b2+bc=b2+c2-2bccosA,整理可得:c=b(1+2cosA),
∴a2=b2+b2(1+2cosA)=b2(2+2cosA),
∴$\frac{a}$=$\sqrt{2+2cosA}$>0,
∴A>B
∴A是銳角△ABC中的最大角或是第二大角,
∵在銳角△ABC中,A∈($\frac{π}{6}$,$\frac{π}{2}$),cosA∈(0,$\frac{1}{2}$),可得:2+2cosA∈(2,3),
∴$\frac{a}$=$\sqrt{2+2cosA}$∈($\sqrt{2}$,$\sqrt{3}$).
故答案為:($\sqrt{2}$,$\sqrt{3}$).
點(diǎn)評(píng) 此題考查了余弦定理,余弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,熟練掌握定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4種 | B. | 16種 | C. | 64種 | D. | 256種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a≥2 | B. | a<2 | C. | a≥1 | D. | a<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com