11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{{2}^{x},x<0}\end{array}\right.$,則f[f(-1)]=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2P

分析 先求出f(-1)=2-1=$\frac{1}{2}$,從而f[f(-1)]=f($\frac{1}{2}$),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{{2}^{x},x<0}\end{array}\right.$,
∴f(-1)=2-1=$\frac{1}{2}$,
f[f(-1)]=f($\frac{1}{2}$)=$(\frac{1}{2})^{2}=\frac{1}{4}$.
故選:A.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)m、n是兩條不同的直線α、β是兩個不同的平面,有下列四個命題:
①如果α∥β,m?α,那么m∥β;
②如果m⊥α,β⊥α,那么m∥β;
③如果m⊥n,m⊥α,n∥β,那么α⊥β;
④如果m∥β,m?α,α∩β=n,那么m∥n
其中正確的命題是( 。
A.①②B.①③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知f(x)是定義在(1,2)上的單調(diào)遞減函數(shù),若f(m+1)<f(3m-1),則實數(shù)m的取值范圍是(  )
A.(0,1)B.($\frac{2}{3}$,1)C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.關(guān)于x不等式(x2-x)(ex-1)>0的解集為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)=$\frac{2}{x}$-ln(x-2)的零點所在的大致區(qū)間為( 。
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知A,B是橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的左右頂點,P是異于A,B的橢圓上一點,.
( 1 )求P到定點Q(0,1)的最大值;
(2)設(shè)PA,PB的斜率為k1,k2,求證:k1k2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若直線L:(2m+1)x+(m+1)y-7m-4=0圓C:(x-1)2+(y-2)2=25交于A,B兩點,則弦長|AB|的最小值為( 。
A.$8\sqrt{5}$B.$4\sqrt{5}$C.$2\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x2+ax在x=0與x=1處的切線互相垂直.
(1)若函數(shù)g(x)=f(x)+$\frac{2}$lnx-bx在(0,+∞)上單調(diào)遞增,求a,b的值;
(2)設(shè)函數(shù)h(x)=$\left\{\begin{array}{l}lnx,x>0\\ f(x+1),x≤0\end{array}$,若方程h(x)-kx=0有四個不相等的實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.等差數(shù)列{an}的前n項和為Sn,若a2=3,S5=25,則a8=( 。
A.13B.14C.15D.16

查看答案和解析>>

同步練習冊答案