雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率是
7
2
,則
b2+1
3a
的最小值為( 。
分析:由題意可知,
c2
a2
=
7
4
,再由c2=a2+b2,得到
b2
a2
=
3
4
,進(jìn)而將
b2+1
3a
表示為
a
4
+
1
3a
的形式,再用基本不等式即可得到答案.
解答:解:由于雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率是
7
2
,
e=
c
a
=
7
2
,∴
c2
a2
=
7
4
,
∵c2=a2+b2,∴
b2
a2
=
3
4

b2+1
3a
=
3
4
a2+1
3a
=
a
4
+
1
3a
≥2
a
4
1
3a
=
3
3

b2+1
3a
的最小值為
3
3

故選:D
點(diǎn)評:本題考查雙曲線的離心率,以及基本不等式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)O和點(diǎn)F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)
的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則
OP
FP
的取值范圍為(  )
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-y2=1(a>0)
的一條準(zhǔn)線方程為x=
3
2
,則a等于
 
,該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C的圓心為雙曲線
x2
a2
-y2=1(a>0)
的左焦點(diǎn),且與此雙曲線的漸近線相切,若圓C被直線l:x-y+2=0截得的弦長等于
2
,則a等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)O和點(diǎn)F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的一點(diǎn),并且P點(diǎn)與右焦點(diǎn)F′的連線垂直x軸,則線段OP的長為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-y2=1
的一個(gè)焦點(diǎn)坐標(biāo)為(-
3
,0)
,則其漸近線方程為( 。
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步練習(xí)冊答案