12.如圖,已知矩形ABCD所在平面與等腰直角三角形BEC所在平面互相垂直,BE⊥EC,AB=BE,M為線段AE的中點(diǎn).
(Ⅰ) 證明:BM⊥平面AEC;
(Ⅱ) 求MC與平面DEC所成的角的余弦值.

分析 (Ⅰ)由已知推導(dǎo)出AB⊥EC,EC⊥BM,AE⊥BM,由此能證明BM⊥平面AEC.
(Ⅱ)將幾何體ABCDE補(bǔ)成三棱柱AFD-BEC,設(shè)EF的中點(diǎn)為G,連結(jié)MG,GC,推導(dǎo)出∠MCG為MC與平面DEC所成的角,由此能求出MC與平面DEC所成的角的余弦值.

解答 證明:(Ⅰ)因?yàn)槠矫鍭BCD⊥平面BEC,
所以AB⊥平面BEC,故AB⊥EC.
因?yàn)锽E⊥EC,所以EC⊥平面ABE,
故EC⊥BM. …(3分)
因?yàn)锳B=BE,M為AE的中點(diǎn),所以AE⊥BM.
所以BM⊥平面AEC.…(7分)
解:(Ⅱ)如圖,將幾何體ABCDE補(bǔ)成三棱柱AFD-BEC,
設(shè)EF的中點(diǎn)為G,連結(jié)MG,GC.
因?yàn)镸G∥BE,所以MG⊥平面DEC. …(10分)
因此∠MCG為MC與平面DEC所成的角. …(11分)
不妨設(shè)AB=2,則AB=BE=EC=2,
因此MG=1,$ME=\sqrt{2}$,$MC=\sqrt{6}$,
故$sin∠MCG=\frac{{\sqrt{6}}}{6}$,
所以MC與平面DEC所成的角的余弦值為$\frac{{\sqrt{30}}}{6}$.…(15分)

點(diǎn)評(píng) 本題主要考查空間點(diǎn)、線、面位置關(guān)系,線面角等基礎(chǔ)知識(shí),同時(shí)考查空間想象能力和運(yùn)算求解能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD⊥DC于D,且AC平分∠DAB,延長(zhǎng)DC交AB的延長(zhǎng)線于點(diǎn)P.
(1)求證:PC2=PA•PB;
(2)若3AC=4BC,⊙O的直徑為7,求線段PC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在長(zhǎng)方體中ABCD-A1B1C1D1,AB=3,BC=AA1=4,點(diǎn)O是AC的中點(diǎn).
(1)求異面直線AD1和DC1所成角的余弦值.
(2)求點(diǎn)C到平面BC1D的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≤6的解集為M.
(1)求M;
(2)當(dāng)a,b∈M時(shí),證明:3|a+b|≤|ab+9|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C的方程為x2+$\frac{{y}^{2}}{4}$=1,定點(diǎn)N(0,1),過圓M:x2+y2=$\frac{4}{5}$上任意一點(diǎn)作圓M的一條切線交橢圓C于A,B兩點(diǎn).
(1)求證:$\overrightarrow{OA}•\overrightarrow{OB}=0$;
(2)若點(diǎn)P,Q在橢圓C上,直線PQ與x軸平行,直線PN交橢圓于另一個(gè)不同的點(diǎn)S,問:直線QS是否經(jīng)過一個(gè)定點(diǎn)?若是,求出這個(gè)定點(diǎn)的坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=x2+1,若f(f(x0))=2,則x0=±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}前n項(xiàng)和為Sn,a1=1,滿足Sn=2an+1+n,n∈N*,則求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=1,點(diǎn)E是B1C1的中點(diǎn),則異面直線AC1與BE所成角的大小為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各函數(shù)中,最小值為2的是(  )
A.$y=x+\frac{1}{x}$,x≠0且x∈RB.$y=\frac{sinx}{2}+\frac{2}{sinx}$,x∈(0,π)
C.$y=\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$,x∈RD.y=ex+e-x,x∈R

查看答案和解析>>

同步練習(xí)冊(cè)答案