10.已知F是雙曲線$C:{x^2}-\frac{y^2}{8}=1$的右焦點(diǎn),P是C左支上一點(diǎn),$A({0,6\sqrt{6}})$,則△APF周長(zhǎng)最小值為32.

分析 設(shè)雙曲線的左焦點(diǎn)為F',求出雙曲線的a,b,c,運(yùn)用雙曲線的定義可得|PA|+|PF|=|PA|+|PF'|+2,考慮P在左支上運(yùn)動(dòng)到與A,F(xiàn)'共線時(shí),取得最小值,即可得到所求值.

解答 解:設(shè)雙曲線的左焦點(diǎn)為F',
由雙曲線$C:{x^2}-\frac{y^2}{8}=1$,可得a=1,b=2$\sqrt{2}$,c=3,
即有F(3,0),F(xiàn)'(-3,0),|AF|=|AF'|=15,
△APF周長(zhǎng)為|PA|+|PF|+|AF|=|PA|+|PF|+15,
由雙曲線的定義可得|PF|-|PF'|=2a=2,
即有|PA|+|PF|=|PA|+|PF'|+2,
當(dāng)P在左支上運(yùn)動(dòng)到A,P,F(xiàn)'共線時(shí),
|PA|+|PF'|取得最小值|AF'|=15,
則有△APF周長(zhǎng)的最小值為15+15+2=32.
故答案為:32.

點(diǎn)評(píng) 本題考查三角形的周長(zhǎng)的最小值,注意運(yùn)用雙曲線的定義和三點(diǎn)共線時(shí)取得最小值,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}+x+1,x≥0}\\{2x+1,x<0}\end{array}}\right.$,若f(sinα+sinβ+sinr-1)=-1,f(cosα+cosβ+cosr+1)=3,則cos(α-β)+cos(β-r)的值為( 。
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn+$\frac{1}{3}$an=1(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log4(1-Sn+1)(n∈N+),Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{{1}_{\;}}{_{n}_{n+1}}$,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓O:x2+y2=2,直線l過兩點(diǎn)A(1,-$\frac{3}{2}$),B(4,0)
(1)求直線l的方程;
(2)若P是直線l上的動(dòng)點(diǎn),過P作圓O的兩條切線PC,PD,切點(diǎn)為C,D,求證:直線CD過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓$C:\frac{x^2}{16}+\frac{y^2}{7}=1$,F(xiàn)為橢圓的右焦點(diǎn),B為橢圓的上頂點(diǎn),P是橢圓上一動(dòng)點(diǎn).
(1)求|OP|2+|PF|2的取值范圍
(2)已知直線l:x+y=1,點(diǎn)P到直線l的距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=Asin(ωx+ϕ)$(ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示,則函數(shù)表達(dá)式為( 。
A.$y=-4sin(\frac{π}{8}x-\frac{π}{4})$B.$y=4sin(\frac{π}{8}x-\frac{π}{4})$C.$y=-4sin(\frac{π}{8}x+\frac{π}{4})$D.$y=4sin(\frac{π}{8}x+\frac{π}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知0<α<$\frac{π}{2}$,cos(2π-α)-sin(π-α)=-$\frac{\sqrt{5}}{5}$
(1)求sinα+cosα的值;
(2)求sin(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=x+\frac{a}{x}-2lnx$.
(1)當(dāng)a=0時(shí),求f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)是否存在實(shí)數(shù)a,當(dāng)0<x≤2時(shí),函數(shù)f(x)圖象上的點(diǎn)都在$\left\{\begin{array}{l}0<x≤2\\ x-y≥0\end{array}\right.$所表示的平面區(qū)域(含邊界)?若存在,求出a的值組成的集合;否則說明理由;
(3)若f(x)有兩個(gè)不同的極值點(diǎn)m,n(m>n),求過兩點(diǎn)M(m,f(m)),N(n,f(n))的直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-2x+alnx(a∈R).
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)在(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),不等式f(x1)≥mx2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案