12.設(shè)點(diǎn)P為橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{4}=1({a>2})$上一點(diǎn),F(xiàn)1,F(xiàn)2分別為C的左、右焦點(diǎn),且∠F1PF2=60°,則△PF1F2的面積為( 。
A.$4\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

分析 依題意,在△F1PF2中,∠F1PF2=60°,|F1P|+|PF2|=2a,求出|F1F2|=2,利用余弦定理可求得|F1P|•|PF2|的值,從而可求得△PF1F2的面積.

解答 解:∵橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{4}=1({a>2})$,
∴b=2,c=$\sqrt{{a}^{2}-4}$.
又∵P為橢圓上一點(diǎn),∠F1PF2=60°,F(xiàn)1、F2為左右焦點(diǎn),
∴|F1P|+|PF2|=2a,|F1F2|=2$\sqrt{{a}^{2}-4}$,
∴|F1F2|2=(|PF1|+|PF2|)2-2|F1P||PF2|-2|F1P|•|PF2|cos60°
=4a2-3|F1P|•|PF2|
=4a2-16,
∴|F1P|•|PF2|=$\frac{16}{3}$.
∴${S}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}$|F1P|•|PF2|sin60°
=$\frac{1}{2}$×$\frac{16}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{4\sqrt{3}}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查余弦定理的應(yīng)用與三角形的面積公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)的定義域?yàn)椋╝,b),導(dǎo)函數(shù)f′(x)在(a,b)上的圖象如圖所示,則函數(shù)f(x)在(a,b)上的極大值點(diǎn)的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.要得到函數(shù)y=sin(3x-$\frac{π}{4}$)的圖象,只需將函數(shù)y=cos3x的圖象( 。
A.向右平移$\frac{π}{4}$個(gè)單位B.向左平移$\frac{π}{4}$個(gè)單位
C.向右平移$\frac{3π}{4}$個(gè)單位D.向左平移$\frac{3π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.以橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的中心O為圓心,以$\sqrt{\frac{ab}{2}}$為半徑的圓稱為該橢圓的“伴隨”.
(1)若橢圓C的離心率為$\frac{\sqrt{3}}{2}$,其“伴隨”與直線$\sqrt{3}$x+y-2=0相切,求橢圓C的方程.
(2)設(shè)橢圓E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4^{2}}$=1,P為橢圓C上任意一點(diǎn),過點(diǎn)P的直線y=kx+m交橢圓E于AB兩點(diǎn),射線PO交橢圓E于點(diǎn)Q.
(i)求$\frac{|OQ|}{|OP|}$的值;
(ii)求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知橢圓x2+2y2=8的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,A為橢圓上的任意一點(diǎn),AP是∠F1AF2的外角平分線,且$\overrightarrow{AP}•\overrightarrow{{F_2}P}=0$,則點(diǎn)P的坐標(biāo)一定滿足( 。
A.x2+y2=8B.x2+y2=1C.x2-y2=1D.$\frac{x^2}{4}+\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“cos2α=0”是“sinα=cosα”的(  )
A.充要條件B.充分非必要條件
C.必要非充分條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若2sinθ+cosθ=0,則$tan(θ+\frac{π}{4})$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了摸清整個(gè)江門大道的交通狀況,工作人員隨機(jī)選取20處路段,在給定的測(cè)試時(shí)間內(nèi)記錄到機(jī)動(dòng)車的通行數(shù)量情況如下(單位:輛):
147  161  170  180  163  172  178  167  191  182
181  173  174  165  158  154  159  189  168  169
(Ⅰ)完成如下頻數(shù)分布表,并作頻率分布直方圖;
通行數(shù)量區(qū)間[145,155)[155,165)[165,175)[175,185)[185,195)
頻數(shù)
(Ⅱ)現(xiàn)用分層抽樣的方法從通行數(shù)量區(qū)間為[165,175)、[175,185)及[185,195)的路段中取出7處加以優(yōu)化,再?gòu)倪@7處中隨機(jī)選2處安裝智能交通信號(hào)燈,設(shè)所取出的7處中,通行數(shù)量區(qū)間為[165,175)路段安裝智能交通信號(hào)燈的數(shù)量為隨機(jī)變量X(單位:盞),試求隨機(jī)變量X的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)全集U=A∪B={1,2,3,4,5},A∩(∁UB)={1,2},則集合B=( 。
A.{2,4,5}B.{3,4,5}C.{4,5}D.(2,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案