7.江津?qū)嶒炛袑W女子排球賽將在第七周即將打響,劉貴霞老師帶領的高二(6班)和鄒鸝娜老師帶領的高二(1班)兩支排球隊打算在第六周進行一場熱身賽,比賽采取五局三勝制,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局高二(6班)獲勝的概率是 $\frac{1}{2}$,其余每局比賽高二(6班)獲勝的概率都是 $\frac{2}{3}$.設各局比賽結(jié)果相互獨立.則高二(6班)以3:0獲勝的概率為$\frac{8}{27}$.

分析 利用相互獨立事件概率乘法公式求解.

解答 解:∵除第五局高二(6班)獲勝的概率是$\frac{1}{2}$,
其余每局比賽高二(6班)獲勝的概率都是$\frac{2}{3}$,
各局比賽結(jié)果相互獨立.
∴高二(6班)以3:0獲勝的概率為p=($\frac{2}{3}$)3=$\frac{8}{27}$.
故答案為:$\frac{8}{27}$.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意相互獨立事件概率乘法公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.化簡求值
(1)$\sqrt{{a^{\frac{1}{2}}}\sqrt{{a^{\frac{1}{2}}}\sqrt{a}}}$
(2)$(-3{a^{\frac{1}{3}}}{b^{\frac{3}{4}}})•(\frac{1}{2}{a^{\frac{2}{3}}}{b^{\frac{1}{4}}})÷(-6{a^{\frac{5}{12}}}{b^{\frac{7}{12}}})(其中a>0,b>0)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)$f(x)=2sinxcos(φ-x)-\frac{1}{2}$($0<φ<\frac{π}{2}$)的圖象過點$(\frac{π}{3},1)$.
(Ⅰ)求φ的值;        
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某班100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均數(shù)、中位數(shù)、眾數(shù);
(2)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如表所示,求數(shù)學成績在[50,80)之外的人數(shù).
分數(shù)段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.從甲、乙、丙、丁、戊5名同學中任選4名參加接力賽,其中,甲不跑第一棒,乙、丙不跑相鄰兩棒,則不同的選排總數(shù)為( 。
A.48B.56C.60D.68

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=Asin(ωx+φ)A>0且ω>0,0<φ<$\frac{π}{2}$的部分圖象,如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)已知f(2x0)=-$\frac{{\sqrt{3}}}{2}$,x0∈(0,$\frac{5π}{6}$),求x0的值;
(3)若函數(shù)h(x)=2f(x)-a在[0,$\frac{4π}{3}$]上有兩個不同的零點,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設f(x)=a(x-5)2+6lnx,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與2x-y+6=0.
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{3}$sin xcos x-$\frac{1}{2}$cos2x-$\frac{1}{2}$.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當x∈[0,$\frac{π}{2}$]時,求函數(shù)f(x)的最大值和最小值及相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=2cos(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個單位得到的函數(shù)圖象關于y軸對稱,則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最大值與最小值之和為( 。
A.$-\sqrt{3}$B.-1C.0D.$\sqrt{3}$

查看答案和解析>>

同步練習冊答案