已知cos(
π
2
)=
3
5
,則cos2θ=(  )
A、-
12
25
B、-
7
25
C、
7
25
D、
12
25
考點:二倍角的余弦
專題:計算題,三角函數(shù)的求值
分析:由已知及誘導公式可求sinθ,從而可求sin2θ,cos2θ,再由二倍角公式即可求解.
解答: 解:∵cos(
π
2
)=
3
5

∴sinθ=-
3
5
,
∴sin2θ=
9
25
,cos2θ=1-sin2θ=
16
25
,
∴cos2θ=cos2θ-sin2θ=
7
25
,
故選:C.
點評:本題主要考查了誘導公式,二倍角公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設T=|2x-1|,若不等式T(x)≥(1+
1
a
)-|2-
1
a
|對任意實數(shù)a≠0恒成立,則x的取值范圍是( 。
A、(-∞,0]∪[1,+∞)
B、(0,1]
C、(-∞,-1]∪[2,+∞)
D、[-1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC內(nèi)角A,B,C的對邊分別為a,b,c.已知a=3,A=60°,b=
6
,則B=( 。
A、45°B、30°
C、60°D、135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,3cos(B-C)-1=6cosBcosC
(1)求cosA
(2)若a=3,S△ABC=2
2
,求b,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=lg2,10b=3,用a、b表示log6
30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=7,a8=-5.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前n項和Sn取得最大值時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

log23,log35,3-2的大小關系正確的是( 。
A、log23>log35>3-2
B、log23>3-2>log35
C、log35>log23>3-2
D、3-2>log35>log23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在坐標原點,焦點在y軸上,經(jīng)過點(
3
,0),且離心率為
1
2
,則橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期為π,
a
=(cos
π
4
,sinφ),
b
=(sin
4
,cosφ),且
a
b

(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若函數(shù)y=f(x)的圖象向右平移
π
2
個單位長度得到y(tǒng)=g(x)的圖象,求y=g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習冊答案