如圖所示,已知C點(diǎn)在圓O直徑BE的延長線上,CA切圓O于A點(diǎn),∠ACB的平分線CD交AE于點(diǎn)F,交AB于點(diǎn)D.
(1)求∠ADF的度數(shù);
(2)若AB=AC,求AC∶BC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=,延長CE交AB于點(diǎn)F,求△BCF外接圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是圓的直徑,是延長線上的一點(diǎn),是圓的割線,過點(diǎn)作的垂線,交直線于點(diǎn),交直線于點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為.
(1)求證:四點(diǎn)共圓;(2)若,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,☉O和☉O′相交于A,B兩點(diǎn),過A作兩圓的切線分別交兩圓于C、D兩點(diǎn),連結(jié)DB并延長交☉O于點(diǎn)E.證明:
(1)AC·BD=AD·AB;
(2)AC=AE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正△ABC中,點(diǎn)D,E分別在邊BC,AC上,且BD=BC,CE=CA,AD,BE相交于點(diǎn)P,求證:
(1)P,D,C,E四點(diǎn)共圓;
(2)AP⊥CP.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D,E,F分別為弦AB與弦AC上的點(diǎn),且BC·AE=DC·AF,B,E,F,C四點(diǎn)共圓.
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B,E,F,C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,CD為Rt△ABC斜邊AB邊上的中線,CE⊥CD,CE=,連接DE交BC于點(diǎn)F,AC=4,BC=3.求證:
(1)△ABC∽△EDC;
(2)DF=EF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點(diǎn)C作⊙O的切線,交BD的延長線于點(diǎn)P,交AD的延長線于點(diǎn)E.
(1)求證:AB2=DE·BC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com