【題目】已知,,…,等10所高校舉行自主招生考試,某同學(xué)參加每所高校的考試獲得通過的概率均為.

(1)如果該同學(xué)10所高校的考試都參加,恰有所通過的概率為,當為何值時,取得最大值;

(2)若,該同學(xué)參加每所高?荚囁璧馁M用均為元,該同學(xué)決定按,,…,順序參加考試,一旦通過某所高校的考試,就不再參加其它高校的考試,否則,繼續(xù)參加其它高校的考試,求該同學(xué)參加考試所需費用的分布列及數(shù)學(xué)期望.

【答案】(1)當時,取得最大值;(2)見解析

【解析】

1)根據(jù)題干得到同學(xué)恰好通過所高校自主招生考試的概率為,將這個表達式看做m的函數(shù)式,對函數(shù)求導(dǎo),可得到單調(diào)性進而得到最值;(2)根據(jù)題干知學(xué)生需要的費用有可能為a,10a,這些情況,再分別求出對應(yīng)的概率值,可得到分布列和期望值.

(1)因為該冋學(xué)通過各?荚嚨母怕示鶠,所以該同學(xué)恰好通過所高校自主招生考試的概率為

時,,遞增;

時,,遞減;

所以當時,取得最大值.

(2)設(shè)該同學(xué)共參加了次考試的概率為.

,

∴所以該同學(xué)參加考試所需費用的分布列如下:

所以,

,①

,②

由①-②得,

所以,

所以

(元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,已知橢圓E的中心在原點,長軸長為8,橢圓在X軸上的兩個焦點與短軸的一個頂點構(gòu)成等邊三角形.

求橢圓的標準方程;

過橢圓內(nèi)一點的直線與橢圓E交于不同的A,B兩點,交直線于點N,若,求證:為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推動更多人閱讀,聯(lián)合國教科文組織確定每年的日為“世界讀書日”.設(shè)立目的是希望居住在世界各地的人,無論你是年老還是年輕,無論你是貧窮還是富裕,都能享受閱讀的樂趣,都能尊重和感謝為人類文明做出過巨大貢獻的思想大師們,都能保護知識產(chǎn)權(quán).為了解不同年齡段居民的主要閱讀方式,某校興趣小組在全市隨機調(diào)查了名居民,經(jīng)統(tǒng)計這人中通過電子閱讀與紙質(zhì)閱讀的人數(shù)之比為,將這人按年齡分組,其中統(tǒng)計通過電子閱讀的居民得到的頻率分布直方圖如圖所示.

(1)求的值及通過電子閱讀的居民的平均年齡;

(2)把年齡在第組的居民稱為青少年組,年齡在第組的居民稱為中老年組,若選出的人中通過紙質(zhì)閱讀的中老年有人,請完成上面列聯(lián)表,則是否有的把握認為閱讀方式與年齡有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p曲線C1=1表示焦點在x軸上的橢圓,命題q曲線C2表示雙曲線

1)若命題p是真命題,求m的取值范圍;

2)若pq的必要不充分條件,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知服從正態(tài)分布的隨機變量在區(qū)間,,內(nèi)取值的概率分別為0.6826,0.9544,0.9974.若某種袋裝大米的質(zhì)量(單位:)服從正態(tài)分布,任意選一袋這種大米,質(zhì)量在的概率為_

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點,點,為拋物線上一點,且不在直線上,則周長取最小值時,線段的長為( )

A. 1B. C. 5D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

討論的單調(diào)區(qū)間;

時,上的最小值為,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個命題:

1命題,使得,則,都有

2)已知函數(shù)f(x)|log2x|,ab,f(a)f(b),ab1

3若平面α內(nèi)存在不共線的三點到平面β的距離相等,則平面α平行于平面β;

4已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關(guān)于點對稱

其中真命題的序號為______________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)時,,求的最大整數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案