9.已知直線l1:y=ax-2a+5過定點(diǎn)A,則點(diǎn)A到直線l:x-2y+3=0的距離為( 。
A.$2\sqrt{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\sqrt{5}$D.$\frac{{2\sqrt{5}}}{5}$

分析 求出定點(diǎn)A的坐標(biāo),利用點(diǎn)到直線的距離公式可得結(jié)論.

解答 解:由直線l1:y=ax-2a+5,可得a(x-2)+(5-y)=0,∴x=2,y=5,即A(2,5)
點(diǎn)A到直線l:x-2y+3=0的距離為$\frac{|2-10+3|}{\sqrt{1+4}}$=$\sqrt{5}$,
故選:C.

點(diǎn)評 本題考查直線過定點(diǎn),考查點(diǎn)到直線的距離公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若等差數(shù)列{an}的公差為2,且a5是a2與a6的等比中項(xiàng),則該數(shù)列的前n項(xiàng)和Sn取最小值時(shí),n的值等于(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)A(x1,y1),B(x2,y2),C(x3,y3)是函數(shù)y=x3的圖象上任意三個(gè)不同的點(diǎn).求證:若A,B,C三點(diǎn)共線,則x1+x2+x3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ax-lnx,g(x)=ln(x2-2x+a),
(1)若a=0,求F(x)=f(x)+g(x)的零點(diǎn);
(2)設(shè)命題P:f(x)在[$\frac{1}{4}$,$\frac{1}{2}$]單調(diào)遞減,q:g(x)的定義域?yàn)镽,若p∧q為真命題,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一點(diǎn)P到兩焦點(diǎn)的距離之積取最大值時(shí),P點(diǎn)的坐標(biāo)是(0,3)或(0,-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l1:(m+3)x+4y=5-3m,l2:2x+(m+5)y=8.m為何值時(shí),(1)l1∥l2;(2)l1與l2重合;(3)l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)a,b,c大于0,則3個(gè)數(shù)$\frac{a},\frac{c},\frac{c}{a}$的值( 。
A.至多有一個(gè)不大于1B.都大于1
C.至少有一個(gè)不大于1D.都小于1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=sin(2x+φ)+1(-π<φ<0)過點(diǎn)$(\frac{π}{8},0)$.
(1)求函數(shù)y=f(x)在$[{0,\frac{π}{2}}]$的值域;
(2)令$g(x)=f(x+\frac{π}{8})$,畫出函數(shù)y=g(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.點(diǎn)P到直線y=-3的距離比到點(diǎn)F(0,1)的距離大2
(Ⅰ)求點(diǎn)P的軌跡C的方程
(Ⅱ)設(shè)點(diǎn)A(-4,4),過點(diǎn)B(4,5)的直線l交軌跡C于M,N兩點(diǎn),直線AM,AN的斜率分別為k1,k2,求|k1-k2|的最小值.

查看答案和解析>>

同步練習(xí)冊答案