(本題滿分12分) 已知函數(shù)的圖象與函數(shù)的圖象關(guān)于點(diǎn)A
(0,1)對稱.(1)求函數(shù)的解析式(2)若=+,且在區(qū)間(0,
上的值不小于,求實(shí)數(shù)的取值范圍.

解:(1)設(shè)圖象上任一點(diǎn)坐標(biāo)為,點(diǎn)關(guān)于點(diǎn)A(0,1)
的對稱點(diǎn)的圖象上…………  3分
 ……  6分
(2)由題意  ,且
(0, ∴ ,即,…………  9分
(0,,
(0,時, …11′∴    ……………… 12分
方法二:
(0,時,
在(0,2上遞增,∴(0,2時, ∴

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng),且時,求的值;
(2)是否存在實(shí)數(shù),使得函數(shù)的定義域、值域都是,若存在,則求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知定義域?yàn)镽的函數(shù)是奇函數(shù).
(Ⅰ)求a的值,并指出函數(shù)的單調(diào)性(不必說明單調(diào)性理由);
(Ⅱ)若對任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)設(shè)是定義在上的函數(shù),且對任意,當(dāng)時,都有
(1)當(dāng)時,比較的大;
(2)解不等式
(3)設(shè),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 設(shè)a > 1,函數(shù)
(1)求的反函數(shù);
(2)若在[0,1]上的最大值與最小值互為相反數(shù),求a的值;
(3)若的圖象不經(jīng)過第二象限,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)已知的反函數(shù)為
(1)若函數(shù)在區(qū)間上單增,求實(shí)數(shù)的取值范圍;
(2)若關(guān)于的方程內(nèi)有兩個不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù).
(1)若對任意恒成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)的圖像與直線有且僅有三個公共點(diǎn),且公共點(diǎn)的橫坐標(biāo)的最大值為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)(m為常數(shù),且m>0)有極大值9.
(1)求m的值;
(2)若斜率為-5的直線是曲線的切線,求此直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知9x-10·3x+9≤0,求函數(shù)y=x-1-4x+2的最大值和最小值

查看答案和解析>>

同步練習(xí)冊答案