設(shè)函數(shù).
(1)若的兩個極值點為,且,求實數(shù)的值;
(2)是否存在實數(shù),使得是上的單調(diào)函數(shù)?若存在,求出的值;若不存在,說明理由.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=x3-x2+ax.
(Ⅰ)當a=2時,求f (x)的極小值;
(Ⅱ)若函數(shù)g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的極小值點與f (x)的極小值點相同.求證:g(x)的極大值小于等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若函數(shù)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),(1)若函數(shù)在處與直線相切;
(1) ①求實數(shù)的值; ②求函數(shù)上的最大值;
(2)當時,若不等式對所有的都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題15分)已知函數(shù)是奇函數(shù),且圖像在點 為自然對數(shù)的底數(shù))處的切線斜率為3.
(1) 求實數(shù)、的值;
(2) 若,且對任意恒成立,求的最大值;
(3) 當時,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
設(shè)函數(shù)()若上是增函數(shù),在(0,1)上是減函數(shù),函數(shù)在R上有三個零點,且1是其中一個零點。
(1)求b的值;
(2)求最小值的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(理數(shù))(14分) 已知函數(shù),.
(Ⅰ)設(shè)函數(shù)F(x)=18f(x)- [h(x)],求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè),解關(guān)于x的方程;
(Ⅲ)設(shè),證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com