(本小題滿分13分)
設(shè)函數(shù))若上是增函數(shù),在(0,1)上是減函數(shù),函數(shù)在R上有三個(gè)零點(diǎn),且1是其中一個(gè)零點(diǎn)。
(1)求b的值;
(2)求最小值的取值范圍。

解:(1),得
上是增函數(shù),在(0,1)上是減函數(shù)
當(dāng)時(shí),取極大值,所以,所以………6分
(2)由(1)知,,由1是零點(diǎn)得………8分

在(0,1)上是減函數(shù),且函數(shù)在R上有三個(gè)零點(diǎn)
,即                           ………10分
所以函數(shù)開口向上,最小值是,
最小值的取值范圍                   …………13分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知函數(shù)
(Ⅰ)求的最小值;
(Ⅱ)若上為單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)若的兩個(gè)極值點(diǎn)為,且,求實(shí)數(shù)的值;
(2)是否存在實(shí)數(shù),使得上的單調(diào)函數(shù)?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知x=4是函數(shù)f(x)=alnx+x2-12x+11的一個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線y=b與函數(shù)y=f(x)的圖象有3個(gè)交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分) 設(shè)函數(shù)f (x)=ln x在(0,) 內(nèi)有極值.
(Ⅰ) 求實(shí)數(shù)a的取值范圍;
(Ⅱ) 若x1∈(0,1),x2∈(1,+).求證:f (x2)-f (x1)>e+2-
注:e是自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
知二次函數(shù)的圖象經(jīng)過點(diǎn)、與點(diǎn),設(shè)函數(shù)
處取到極值,其中,
(1)求的二次項(xiàng)系數(shù)的值;
(2)比較的大。ㄒ蟀磸男〉酱笈帕校;
(3)若,且過原點(diǎn)存在兩條互相垂直的直線與曲線均相切,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知函數(shù),,
(Ⅰ)當(dāng)時(shí),若上單調(diào)遞增,求的取值范圍;
(Ⅱ)求滿足下列條件的所有實(shí)數(shù)對(duì):當(dāng)是整數(shù)時(shí),存在,使得的最大值,的最小值;
(Ⅲ)對(duì)滿足(Ⅱ)的條件的一個(gè)實(shí)數(shù)對(duì),試構(gòu)造一個(gè)定義在,且上的函數(shù),使當(dāng)時(shí),,當(dāng)時(shí),取得最大值的自變量的值構(gòu)成以為首項(xiàng)的等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) (1)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍; (2)若的極值點(diǎn),求上的最大值;(3)在(2)的條件下,是否存在實(shí)數(shù),使得函數(shù)的圖像與函數(shù)的圖象恰有3個(gè)交點(diǎn)?若存在,請(qǐng)求出實(shí)數(shù)的取值范圍;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

同步練習(xí)冊答案