如圖所示,把一個長方形紙片沿EF折疊后,點D,C分別落在D′,C′的位置.若∠EFB=65°,則∠AED′等于( 。
分析:首先根據(jù)AD∥BC,求出∠FED的度數(shù),然后根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大。
解答:解:∵AD∥BC,
∴∠EFB=∠FED=65°,
由折疊的性質(zhì)知,∠DEF=∠FED′=65°,
∴∠AED′=180°-2∠FED=50°.
故∠AED′等于50°.
故選C
點評:此題考查了長方形的性質(zhì)與折疊的性質(zhì).此題比較簡單,解題的關鍵是注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:044

如圖所示,把一塊邊長是a的正方形鐵片的各角切去大小相同的小正方形,再把它的邊沿著虛線折轉(zhuǎn)作成一個無蓋方底的盒子,問切去的正方形邊長是多少時,才能使盒子的容積最大?

查看答案和解析>>

同步練習冊答案