15.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,a1=2,a1+a4=a5,若Sn>32,則n的最小值為(  )
A.3B.4C.5D.6

分析 利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,
a1=2,a1+a4=a5,∴2×2+3d=2+4d,解得d=2.
∴S5=$5×2+\frac{5×4}{2}×2$=30,S6=$6×2+\frac{6×5}{2}$×2=38>32.
若Sn>32,則n的最小值為6.
故選:D.

點(diǎn)評(píng) 本題考查等差數(shù)列基本量的求取、通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=x+$\frac{1}{x}$,下列結(jié)論正確的是( 。
A.x=-1是f(x)的極小值點(diǎn)B.x=1是f(x)的極大值點(diǎn)
C.(1,+∞)是f(x)的單調(diào)增區(qū)間D.(-1,1)是f(x)的單調(diào)增區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線(xiàn)l:y=kx+1與拋物線(xiàn)y2=4x恰有一個(gè)公共點(diǎn),則實(shí)數(shù)k的值為( 。
A.0B.1C.-1或0D.0或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.玻璃盒子里裝有各色球12個(gè),其中5紅、4黑、2白、1綠,從中任取1球.記事件A為“取出1個(gè)紅球”,事件B為“取出1個(gè)黑球”,事件C為“取出1個(gè)白球”,事件D為“取出1個(gè)綠球”.已知P(A)=$\frac{5}{12}$,P(B)=$\frac{1}{3}$,P(C)=$\frac{1}{6}$,P(D)=$\frac{1}{12}$.求:
(1)“取出1球?yàn)榧t球或黑球”的概率;
(2)“取出1球?yàn)榧t球或黑球或白球”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2{x}^{3}-a{x}^{2}-1,x<0}\\{|x-3|+a,x≥0}\end{array}\right.$恰有兩個(gè)零點(diǎn),則a的取值范圍是(-3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知f(x)=cosxsinx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$.
(1)求f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,A為銳角且f(A)=$\frac{\sqrt{3}}{2}$,D為BC中點(diǎn),AD=3,AB=$\sqrt{3}$,求AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.把八進(jìn)制數(shù)67(8)轉(zhuǎn)化為三進(jìn)制數(shù)為2001(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓經(jīng)過(guò)點(diǎn)(2,1).試求其長(zhǎng)軸長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列命題中,真命題是( 。
A.?x∈R,x2≥x
B.命題“若x=1,則x2=1”的逆命題
C.0,β0∈R,使得sin(α00)=sinα0+sinβ0
D.命題“若x≠y,則sinx≠siny”的逆否命題

查看答案和解析>>

同步練習(xí)冊(cè)答案