已知點(1,
1
3
)是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點,等比數(shù)列{an}的前n項和為f(n)-c,數(shù)列{bn}(bn>0)的首項為c,且前n項和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2)
(Ⅰ)求數(shù)列{an}和{bn}的通項公式
(Ⅱ)求數(shù)列{
1
bnbn+1
}前n項和為Tn
考點:數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)依題意,可求得a=
1
3
,繼而可求得a1=
1
3
-c,a2=-
2
9
,a3=-
2
27
,利用數(shù)列{an}為等比數(shù)列,可求得c=1,從而可求得數(shù)列{an}的通項公式;利用Sn-Sn-1=(
Sn
+
Sn-1
)(
Sn
-
Sn-1
)=
Sn
+
Sn-1
(n≥2),可求得
Sn
-
Sn-1
=1,從而可求得Sn=n2;當(dāng)n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1,n=1時也適合,從而可得
{bn}的通項公式;
(Ⅱ)利用裂項法知,
1
bnbn+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),于是可求得數(shù)列{
1
bnbn+1
}前n項和為Tn
解答: 解:(Ⅰ)∵f(1)=
1
3
,故a=
1
3

∴f(x)=(
1
3
)
x
,
∵a1=f(1)-c=
1
3
-c,a2=[f(2)-c]-[f(1)-c]=-
2
9
,a3=[f(3)-c]-[f(2)-c]=-
2
27

又?jǐn)?shù)列{an}為等比數(shù)列,a1=
a22
a3
=
4
81
-
2
27
=-
2
3
=
1
3
-c,
∴c=1,又公比q=
a2
a1
=
1
3
,
∴an=-
2
3
(
1
3
)
n-1
=-2(
1
3
)
n
,n∈N*;
∵Sn-Sn-1=(
Sn
+
Sn-1
)(
Sn
-
Sn-1
)=
Sn
+
Sn-1
(n≥2),
又bn>0,
Sn
>0,
Sn
-
Sn-1
=1;
∴數(shù)列{
Sn
}構(gòu)成一個首相為1公差為1的等差數(shù)列,
Sn
=1+(n-1)×1=n,于是Sn=n2;
當(dāng)n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1;
∴bn=2n-1,n∈N*
(Ⅱ)∵
1
bnbn+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),
∴Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1

=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+(
1
7
-
1
9
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1

=
n
2n+1
點評:本題考查數(shù)列的求和,著重考查等差關(guān)系與等比關(guān)系的確定及其通項公式的應(yīng)用,考查錯位相減法,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線x-y+3=0的傾斜角是(  )
A、
π
6
B、
6
C、
π
4
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

咖啡館配制兩種飲料,甲種飲料每杯分別用奶粉、咖啡、糖9g、4g、3g;乙種飲料每杯分別用奶粉、咖啡、糖4g、5g、10g,已知每天使用原料限額為奶粉3600g,咖啡2000g,糖3000g,如果甲種飲料每杯能獲利0.7元,乙種飲料每杯能獲利1.2元,每天在原料使用的限額內(nèi),飲料能全部售完,問咖啡館每天怎樣安排配制飲料獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商品在近30天內(nèi)每件的銷售價格P(元)和時間t(天)的函數(shù)關(guān)系為:P=
t+20  (0<t<25)
-t+100  (25≤t≤30)
(t∈N*),設(shè)商品的日銷售量Q(件)與時間t(天)的函數(shù)關(guān)系為Q=40-t(0<t≤30,t∈N*),則第
 
天,這種商品的日銷售金額最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,O為線段A0A2013外一點,若A0,A1,A2,A3,…,A2013中任意相鄰兩點的距離相等,
OA0
=
a
OA2013
=
b
,用
a
,
b
表示
OA0
+
OA1
+
OA2
+…+
OA2013
結(jié)果為(  )
A、1006(
a
+
b
B、1007(
a
+
b
C、2012(
a
+
b
D、2014(
a
+
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x0是函數(shù)f(x)=(
1
2
x-
x
的一個零點,若x1∈(0,x0),x2∈(x0,+∞),則( 。
A、f(x1)<0,f(x2)<0
B、f(x1)>0,f(x2)<0
C、f(x1)<0,f(x2)>0
D、f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四面體棱長為a,求其內(nèi)切球與外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,三棱臺ABC-A′B′C′中,AB:A′B′=1:2,則三棱錐C-A′B′C′,B-A′B′C,A′-ABC的體積之比為( 。
A、1:1:1
B、2:1:1
C、4:2:1
D、4:4:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:x2+y2-2x+2y=0與直線L:y+2=k(x-2),則C與L的公共點( 。
A、有2個B、最多1個
C、至少1個D、不存在

查看答案和解析>>

同步練習(xí)冊答案