解方程:3x=2-x(精確到0.1)
考點(diǎn):函數(shù)的零點(diǎn)
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:先利用圖象找到根所在的區(qū)間(0,1),再利用二分法把區(qū)間一次次縮小,直到滿(mǎn)足要求為止即可.
解答: 解:由圖象,知函數(shù)f(x)=3x-2+x的根x0∈(0,1)
又因?yàn)閒(0)<0,f(0.5)>0→x0∈(0,0.5)
f(0.25)<0,f(0.5)>0→x0∈(0.25,0.5)
f(0.375)<0,f(0.5)>0→x0∈(0.375,0.5)
f(0.375)<0,f(0.4375)>0→x0∈(0.375,0.4375)
而0.375與0.4375精確到0.1都是0.4,所以,方程的近似解為0.4
點(diǎn)評(píng):本題主要考查用二分法求區(qū)間根的問(wèn)題,屬于基礎(chǔ)題型.在利用二分法求區(qū)間根的問(wèn)題上,如果題中有根的精確度的限制,在解題時(shí)就一定要計(jì)算到滿(mǎn)足要求才能結(jié)束,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線4x+3y-35=0與圓心在原點(diǎn)的圓C相切,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A、B分別為橢圓
x2
a2
+
y2
b2
=1的左右頂點(diǎn)(a>b>0),(1,
3
2
)為橢圓上一點(diǎn),橢圓的長(zhǎng)半軸的長(zhǎng)等于焦距.
(1)求橢圓的方程;
(2)設(shè)P(4,x),(x≠0),若直線AP,BP分別與橢圓相交于異于A、B的點(diǎn)M,N,求證:∠MBN為鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-a|.
(1)若a=1時(shí),解不等式f(x)+f(x-1)≤4;
(2)若不等式f(x)-x>3-2a2對(duì)x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+γ)(A>0,ω>0,|φ|<
π
2
)的圖象與y軸交與點(diǎn)(0,
3
),在y軸右邊到y(tǒng)軸最近的最高點(diǎn)坐標(biāo)為(
π
12
,2).
(1)求f(x);
(2)若g(x)=f(x+
π
4
),求g(x)的對(duì)稱(chēng)軸和對(duì)稱(chēng)中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,0≤φ≤
π
2
)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)為P(
1
3
,2),在原點(diǎn)右側(cè)與x軸的第一個(gè)交點(diǎn)為H(
5
6
,0)
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[
1
4
3
4
]上的對(duì)稱(chēng)軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知異面直線a,b所成的角為θ=60°,P為空間一點(diǎn),則
(1)過(guò)點(diǎn)P與直線a,b所成的角為45°的直線有幾條?
(2)過(guò)點(diǎn)P與直線a,b所成的角為60°的直線有幾條?
(3)過(guò)點(diǎn)P與直線a,b所成的角為70°的直線有幾條?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=a|x-b|+2在(1,∞)上遞增,則實(shí)數(shù)a,b滿(mǎn)足的條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程組:
a+b=9
2
c
a
=
3
5
a2=b2+c2

查看答案和解析>>

同步練習(xí)冊(cè)答案