【題目】已知集合

⑴求實(shí)數(shù)的值;

⑵若,求集合。

【答案】;⑵

【解析】試題分析:(1)的子集,得到中所有元素都屬于,列出關(guān)于的方程,方程解方程即可得到的值;(2)的值代入確定出,根據(jù),得到中必然含有元素,寫(xiě)出集合的所有可能情況即可.

試題解析:(1)∵集合A={1,3,x2},B={1,2-x},且BA,
∴2-x=3或2-x=x2,
解得:x=-1或x=1或-2,
經(jīng)檢驗(yàn)x=1或-1不合題意,舍去,
則x=-2;
(2)∵A={1,3,4},B={1,4},B∪C=A,
∴C={1,3,4}或{3}或{1,3}或{3,4}.

【名師點(diǎn)晴】研究集合問(wèn)題,一定要抓住元素,看元素應(yīng)滿足的屬性.研究?jī)杉系年P(guān)系時(shí),關(guān)鍵是將兩集合的關(guān)系轉(zhuǎn)化為元素間的關(guān)系,本題⑵實(shí)質(zhì)求滿足條件元素組成的集合. 本題需注意檢驗(yàn)集合的元素是否滿足互異性,否則容易出錯(cuò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問(wèn)題所用的時(shí)間,講座開(kāi)始時(shí),學(xué)生的興趣激增,中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散,分析結(jié)果和實(shí)驗(yàn)表明,用表示學(xué)生掌握和接受概念的能力(的值越大,表示接受能力越強(qiáng)),表示提出和講授概念的時(shí)間(單位:分),可以有以下公式:

(1)開(kāi)講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少分鐘?

(2)開(kāi)講5分鐘與開(kāi)講20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?

(3)一個(gè)數(shù)學(xué)難題,需要55的接受能力以及13分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4,且位于x軸上方的點(diǎn),A到拋物線準(zhǔn)線的距離等于5,過(guò)A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M.

(1)求拋物線的方程;

(2)以M為圓心,MB為半徑作圓M,當(dāng)K(m,0)是x軸上一動(dòng)點(diǎn)時(shí),討論直線AK與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a1|+|a2|+|a3|+|a4|+|a5|=32

α,β,γ是三個(gè)不同的平面,則“γα,γβ”是“αβ”的充分條件

已知sin,則cos.其中正確命題的個(gè)數(shù)為( )

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3x2x(0<a<1,x∈R).若對(duì)于任意的三個(gè)實(shí)數(shù)x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】東莞市某高級(jí)中學(xué)在今年4月份安裝了一批空調(diào),關(guān)于這批空調(diào)的使用年限(單位:年, )和所支出的維護(hù)費(fèi)用(單位:萬(wàn)元)廠家提供的統(tǒng)計(jì)資料如下:

(1)請(qǐng)根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護(hù)費(fèi)用關(guān)于的線性回歸方程;

(2)若規(guī)定當(dāng)維護(hù)費(fèi)用超過(guò)13.1萬(wàn)元時(shí),該批空調(diào)必須報(bào)廢,試根據(jù)(1)的結(jié)論求該批空調(diào)使用年限的最大值.

參考公式:最小二乘估計(jì)線性回歸方程中系數(shù)計(jì)算公式:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲,在直角梯形中,,,的中點(diǎn),的交點(diǎn),將沿折起到的位置,如圖乙.

)證明:平面;

)若平面平面,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))在上的最小值為,當(dāng)把的圖象上所有的點(diǎn)向右平移個(gè)單位后得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)在,,對(duì)應(yīng)的邊分別是,,,若函數(shù)軸右側(cè)的第一個(gè)零點(diǎn)恰為,,求△的面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an},{bn}中,a12,b14,且an,bn,an1成等差數(shù)列,bn,an1bn1成等比數(shù)列{nN}

a2,a3a4b2b3,b4,由此猜測(cè){an},{bn}的通項(xiàng)公式,并證明你的結(jié)論;

查看答案和解析>>

同步練習(xí)冊(cè)答案