分析 設(shè)2x=t,則t2+at+a+1=0在(0,+∞)上有解,分離參數(shù)得-a=$\frac{{t}^{2}+1}{t+1}$,利用不等式求出函數(shù)的最值即可得出a的范圍.
解答 解:設(shè)2x=t,t2+at+a+1=0在(0,+∞)上有解,
分離參數(shù)得:-a=$\frac{{t}^{2}+1}{t+1}$=t+1+$\frac{2}{t+1}$-2≥2$\sqrt{2}$-2,
當(dāng)且僅當(dāng)t+1=$\frac{2}{t+1}$即t=$\sqrt{2}$-1時取等號,
∴a≤2-2$\sqrt{2}$,
故答案為:(-∞,2-2$\sqrt{2}$].
點評 本題考查了函數(shù)零點與函數(shù)最值的關(guān)系,函數(shù)最值的計算,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)+x<m+n | B. | f(x)+x>m+n | C. | f(x)-x<0 | D. | f(x)-x>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2e,e] | B. | [0,2e] | C. | (-∞,-e)∪[e,2e] | D. | (-∞,-e)∪[0,e] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com