分析 求出切線方程,得到B的坐標(biāo),根據(jù)不等式的性質(zhì)求出OB的值即可.
解答 解:切點(diǎn)P的坐標(biāo)是(x0,cosx0),(x0∈(0,$\frac{π}{2}$]),
則切線的斜率是-sinx0,
故切線AB的方程是:y-cosx0=-sinx0(x-x0),
故B(0,cosx0+x0sinx0),A($\frac{co{sx}_{0}}{si{nx}_{0}}$+x0,0)
故|OB|=cosx0+x0sinx0,OA=$\frac{co{sx}_{0}}{si{nx}_{0}}$+x0,即$\frac{OB}{OA}$=sinx0,
故OA+$\frac{1}{OB}$$≥\sqrt{OA•\frac{1}{OB}}$=2$\sqrt{\frac{1}{si{nx}_{0}}}$,
當(dāng)x∈(0,$\frac{π}{2}$]時(shí),2$\sqrt{\frac{1}{si{nx}_{0}}}$≥2,
當(dāng)且僅當(dāng)x0=$\frac{π}{2}$時(shí)取“=”,
故OB=cos$\frac{π}{2}$+$\frac{π}{2}$sin$\frac{π}{2}$=$\frac{π}{2}$,
故答案為:$\frac{π}{2}$.
點(diǎn)評(píng) 本題考查了切線方程問(wèn)題,考查不等式的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 48種 | B. | 72種 | C. | 96種 | D. | 108種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2\sqrt{2}}{3}$或$\frac{4\sqrt{2}}{9}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{7\sqrt{2}}{8}$ | D. | $\frac{\sqrt{2}}{4}$或$\frac{7\sqrt{2}}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
廣告費(fèi)x(萬(wàn)元) | 1 | 2 | 3 | 4 | 5 |
銷售量y(萬(wàn)臺(tái)) | 2 | 5 | 10 | 15 | 18 |
A. | 30 | B. | 52 | C. | 57.2 | D. | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{2}{3}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{2}}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1-ln2}{2}$ | B. | $\frac{3-2ln2}{4}$ | C. | $\frac{1+ln2}{2}$ | D. | $\frac{1+2ln2}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com