【題目】已知直線l的參數(shù)方程是 (t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,且取相同的長(zhǎng)度單位建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2 cos(θ+ ).
(1)求直線l的普通方程與圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于A、B兩點(diǎn),若P點(diǎn)的直角坐標(biāo)為(1,0),求|PA|+|PB|的值.

【答案】
(1)解:∵直線l的參數(shù)方程是 (t是參數(shù)),∴x+y=1.

即直線l的普通方程為x+y﹣1=0.

∵ρ=2 cos(θ+ )=2cosθ﹣2sinθ,

∴ρ2=2ρcosθ﹣2ρsinθ,

∴圓C的直角坐標(biāo)方程為x2+y2=2x﹣2y,即x2+y2﹣2x+2y=0


(2)解:將 代入x2+y2﹣2x+2y=0得t2 t﹣1=0,

∴t1+t2= ,t1t2=﹣1.

∴|PA|+|PB|=|t1﹣t2|= =


【解析】(1)將參數(shù)方程兩式相加消去參數(shù)t得到直線l的普通方程,將極坐標(biāo)方程展開兩邊同乘ρ,根據(jù)極坐標(biāo)與直角坐標(biāo)的對(duì)應(yīng)關(guān)系得到直角坐標(biāo)方程;(2)將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,利用根與系數(shù)的關(guān)系和參數(shù)的幾何意義求出距離.
【考點(diǎn)精析】本題主要考查了直線的參數(shù)方程的相關(guān)知識(shí)點(diǎn),需要掌握經(jīng)過點(diǎn),傾斜角為的直線的參數(shù)方程可表示為為參數(shù))才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},滿足a1=1,a2=3,an+2=3an+1﹣2an , bn=an+1﹣an ,
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinx,1), =( Acosx, cos2x)(A>0),函數(shù)f(x)= 的最大值為6.
(1)求A;
(2)將函數(shù)y=f(x)的圖象像左平移 個(gè)單位,再將所得圖象各點(diǎn)的橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0, ]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)M(2,0),AB邊所在直線的方程為x-3y-6=0,點(diǎn)T(-1,1)在AD邊所在直線上.求:

(1) AD邊所在直線的方程;

(2) DC邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三角形中,過其中心作邊的平行線,分別交,,將沿折起到的位置,使點(diǎn)在平面上的射影恰是線段的中點(diǎn),則二面角的平面角的大小是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分) 已知P3,2),一直線過點(diǎn)P,

若直線在兩坐標(biāo)軸上截距之和為12,求直線的方程;

若直線xy軸正半軸交于A、B兩點(diǎn),當(dāng)面積為12時(shí)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α、β是三次函數(shù)f(x)= x3+ ax2+2bx(a,b∈R)的兩個(gè)極值點(diǎn),且α∈(0,1),β∈(1,2),則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O,A,B三地在同一水平面內(nèi),A地在O地正東方向2km處,B地在O地正北方向2km處,某測(cè)繪隊(duì)員在A、B之間的直線公路上任選一點(diǎn)C作為測(cè)繪點(diǎn),用測(cè)繪儀進(jìn)行測(cè)繪,O地為一磁場(chǎng),距離其不超過 的范圍內(nèi)對(duì)測(cè)繪儀等電子儀器形成干擾,使測(cè)量結(jié)果不準(zhǔn)確,則該測(cè)繪隊(duì)員能夠得到準(zhǔn)確數(shù)據(jù)的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店計(jì)劃每天購(gòu)進(jìn)某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利30元.
(1)若商店一天購(gòu)進(jìn)該商品10件,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N)的函數(shù)解析式;
(2)商店記錄了50天該商品的日需求量(單位:件),整理得表:

日需求量n

8

9

10

11

12

頻數(shù)

10

10

15

10

5

①假設(shè)該店在這50天內(nèi)每天購(gòu)進(jìn)10件該商品,求這50天的日利潤(rùn)(單位:元)的平均數(shù);
②若該店一天購(gòu)進(jìn)10件該商品,記“當(dāng)天的利潤(rùn)在區(qū)間[400,550]”為事件A,求P(A)的估計(jì)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案