2.已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若$(\sqrt{3}b-c)cosA=acosC$,則cosA=$\frac{\sqrt{3}}{3}$.

分析 根據(jù)正弦定理將a,b,c替換,從而求出A的余弦值.

解答 解:∵$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=2R,
∴a=2RsinA,b=2RsinB,c=2RsinC,
由$(\sqrt{3}b-c)cosA=acosC$,
得($\sqrt{3}$•2RsinB-2RsinC)cosA=2RsinAcosC,
∴$\sqrt{3}$cosAsin(A+C)=sin(A+C),
∴cosA=$\frac{{\sqrt{3}}}{3}$.

點(diǎn)評(píng) 本題考查了正弦定理,三角函數(shù)的恒等變換,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知一個(gè)數(shù)列{an}的各項(xiàng)是1或3,首項(xiàng)為1,且在第k個(gè)1和第k+1個(gè)1之間有2k-1個(gè)3,即1,3,1,3,3,3,1,3,3,3,3,3,1….
(1)試問(wèn):第2013個(gè)1為該數(shù)列的第幾項(xiàng)?
(2)求a2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}中,a1=$\frac{1}{2}$,an≠0,Sn為該數(shù)列的前n項(xiàng)和,且Sn+1=an(1-an+1)+Sn,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若不等式an+an+1+an+2+…+a3n>$\frac{a}{24}$對(duì)一切正整數(shù)n都成立,求正整數(shù)a的最大值,并證明結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列式子中成立的是( 。
A.log0.44<log0.46B.1.013.4>1.013.5C.3.50.3>3.40.3D.log56<log67

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}滿足${a_1}=\frac{1}{5}$,且當(dāng)n>1,n∈N*時(shí),有$\frac{{{a_{n-1}}}}{a_n}=\frac{{2{a_{n-1}}+1}}{{1-2{a_n}}}$,
(1)求證:數(shù)列$\{\frac{1}{a_n}\}$為等差數(shù)列;
(2)試問(wèn)a1•a2是否是數(shù)列{an}中的項(xiàng)?如果是,是第幾項(xiàng);如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知f(α)=$\frac{sin(α-\frac{π}{2})cos(-\frac{3π}{2}-α)tan(π-α)}{tan(-α-π)sin(π+α)}$.
(1)化簡(jiǎn)f(α);
(2)若tanα=2,且α∈(π,$\frac{3π}{2}$),求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)命題p:函數(shù)$f(x)={(a-\frac{3}{2})^x}$是R上的減函數(shù),命題q:x2+2ax+6a-8>0對(duì)任意x∈R都成立.若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=(2-a)(x-1)-2lnx(a為常數(shù)),g(x)=ex-x+1
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間$(0,\frac{1}{2})$上無(wú)零點(diǎn),求a的最小值;
(3)若對(duì)任意給定的x0∈(0,1],則(0,e]上總存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知非零向量$\overrightarrow{a}$、$\overrightarrow$ 滿足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|且3$\overrightarrow{a}$2=$\overrightarrow$2,則$\overrightarrow{a}$與$\overrightarrow$-$\overrightarrow{a}$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案