9.已知x>0,y>0,且2x+8y-xy=0,則當(dāng)x+y取得最小值時,y=( 。
A.16B.6C.18D.12

分析 化簡已知條件,得到$\frac{2}{y}$+$\frac{8}{x}$=1,通過x+y,乘1法”與基本不等式的性質(zhì)求解.

解答 解:直接利用基本不等式
∵x>0,y>0,2x+8y=xy
那么:$\frac{2}{y}$+$\frac{8}{x}$=1
x+y=(x+y)($\frac{2}{y}+\frac{8}{x}$)=10+$\frac{2x}{y}$+$\frac{8y}{x}$≥2$\sqrt{16}$+10=18.
當(dāng)且僅當(dāng)x=12,y=6時取等號.
故選:B.

點評 本題考查了基本不等式的靈活運(yùn)用能力.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知正方體的8個頂點中,有4個為一側(cè)面是等邊三角形的正三棱錐的頂點,則這個正三棱錐與正方體的全面積之比可能為( 。
A.$1:\sqrt{3}$B.$1:\sqrt{2}$C.$2:\sqrt{2}$D.$3:\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=ax-1+2,a>0 且a≠1,則f(x)必過定點(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)命題p:若2m+n=2,則雙曲線$\frac{{y}^{2}}{{4}^{m}}$-$\frac{{x}^{2}}{{2}^{n}+5}$=1的焦距的最小值為6,命題q:若一圓柱存在的內(nèi)切球,則此圓柱的表面積與內(nèi)切球的表面積之比恰好等于圓柱的體積與內(nèi)切球的體積之比,那么,下列命題為真命題的是( 。
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,角A,B,C所對的邊分別為a,b,c,且a=1,b=2,cosC=$\frac{1}{4}$,則sinA=( 。
A.$\frac{\sqrt{15}}{8}$B.$\frac{1}{8}$C.$\frac{\sqrt{10}}{8}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題“?x∈R,使得x2+x+1<0”的否定是( 。
A.?x∈R,均有x2+x+1<0B.?x∈R,使得x2+x+1>0
C.?x∈R,使得x2+x+1≥0D.?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時駛進(jìn)航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天的時間與水深關(guān)系表:
時刻(t)0:003:006:009:0012:0015:0018:0021:0024:00
水深/米(y)5.07.55.02.55.07.55.02.55.0
(1)若用函數(shù)f(t)=Asin(ωt+φ)+h(A>0,ω>0,|φ|<$\frac{π}{2}$)來近似描述這個港口的水深和時間之間的對應(yīng)關(guān)系,根據(jù)表中數(shù)據(jù)確定函數(shù)表達(dá)式;
(2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定要有2.25米的安全間隙(船底與洋底的距離),該船何時能進(jìn)入港口?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的離心率e為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,短軸的一個端點為M(0,1),過橢圓左頂點A的直線l與橢圓的另一交點為B.
(1)求橢圓的方程;
(2)若l與直線x=a交于點P,求$\overrightarrow{OB}$•$\overrightarrow{OP}$的值;
(3)若|AB|=$\frac{4}{3}$,求直線l的傾斜角.

查看答案和解析>>

同步練習(xí)冊答案