年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
B(文)設(shè)是定義在上的偶函數(shù),當(dāng)時(shí),222233.
(1)若在上為增函數(shù),求的取值范圍;
(2)是否存在正整數(shù),使的圖象的最高點(diǎn)落在直線上?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
(1)若且對任意實(shí)數(shù)均有成立,求的表達(dá)式;
(2)在(1)條件下,當(dāng)是單調(diào)遞增,求實(shí)數(shù)k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知定義域?yàn)閇0, 1]的函數(shù)f(x)同時(shí)滿足:
①對于任意的x[0, 1],總有f(x)≥0;
②f(1)=1;
③若0≤x1≤1, 0≤x2≤1, x1+x2≤1, 則有f(x1+x2) ≥ f(x1)+f(x2).
(1)試求f(0)的值;
(2)試求函數(shù)f(x)的最大值;
(3)試證明:當(dāng)x, nN+時(shí),f(x)<2x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)f(x)是定義在[-1,1]上的奇函數(shù),對于任意的 當(dāng)時(shí),都
有
(1)若函數(shù)g(x)=f(x-c)和h(x)=f(x-c2)的定義域的交集是空集,求c的取值范圍;
(2)判斷函數(shù)f(x)在[-1,1]上的單調(diào)性,并用定義證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知函數(shù)為偶函數(shù),且其圖象上相鄰兩對稱軸之間的距離為.
(I)求函數(shù)的表達(dá)式。
(II)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)如圖,已知底角的等腰梯形ABCD,底邊BC長為7cm,腰長為cm,當(dāng)一條垂直于底邊BC(垂足為F)的直線l從左至右移動(dòng)(與梯形ABCD有公共點(diǎn))時(shí),直線l把梯形分成兩部分,令BF=,試寫出左邊部分的面積與的函數(shù)解析式,并畫出大致圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)
設(shè)函數(shù)。
(1)將f(x)寫成分段函數(shù),在給定坐標(biāo)系中作出函數(shù)的圖像;
(2)解不等式f(x)>5,并求出函數(shù)y= f(x)的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com