14.已知偶函數(shù)f(x)的定義域?yàn)镽,且在(-∞,0)上是增函數(shù),則f(a2-a+1)與f($\frac{3}{4}$)的大小關(guān)系為(  )
A.f(a2-a+1)<$f(\frac{3}{4})$B.f(a2-a+1)>$f(\frac{3}{4})$C.f(a2-a+1)≤$f(\frac{3}{4})$D.f(a2-a+1)≥$f(\frac{3}{4})$

分析 判斷兩個(gè)函數(shù)自變量的值的大小,利用函數(shù)的單調(diào)性求解即可.

解答 解:a2-a+1=(a-$\frac{1}{2}$)2+$\frac{3}{4}$≥$\frac{3}{4}$.
偶函數(shù)f(x)的定義域?yàn)镽,且在(-∞,0)上是增函數(shù),在(0,+∞)是減函數(shù);
則f(a2-a+1)≤f($\frac{3}{4}$).
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性以及函數(shù)的奇偶性的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.求函數(shù)y=$\frac{{{x^4}+2{x^2}+5}}{{{x^2}+1}}$的最小值5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=x3-2x2+a,g(x)=x2+mln(x+1).
(I)若f(x)在x∈[-$\frac{1}{2}$,1]上的最大值為0,求實(shí)數(shù)a的值;
(II)若g(x)是定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(III)在(I)的條件下,當(dāng)m=1時(shí),令F(x)=f(x)+g(x),試證明ln$\frac{n+1}{n}$>$\frac{n-1}{{n}^{3}}$(n∈N+)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.“序數(shù)”指每個(gè)數(shù)字比其左邊的數(shù)字大的自然數(shù)(如1258),在兩位的“序數(shù)”中任取一個(gè)數(shù)比56大的概率是(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若偶函數(shù)f(x)在[0,+∞)上是增函數(shù),a=f(ln$\frac{1}{π}$),b=f(logπ$\frac{1}{e}$),c=f(ln$\frac{1}{{π}^{2}}$),(e為自然對(duì)數(shù)的底),則a,b,c的大小關(guān)系為( 。
A.c<b<aB.b<a<cC.c<a<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在以點(diǎn)O為圓心,1為半徑的半圓弧上任取一點(diǎn)B,如圖,則△AOB的面積大于<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>14$\frac{1}{4}$的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.?dāng)?shù)列{an}的前n項(xiàng)和為Sn=3n,則an=$\left\{\begin{array}{l}{3,n=1}\\{2×{3}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{x^2}{3}$+y2=1,已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a2=b2+c2-bc,a=3,則△ABC 的周長(zhǎng)的最大值為( 。
A.2$\sqrt{3}$B.6C.$\sqrt{3}$D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案