設(shè)雙曲線
x2
3
-
y2
6
=1
的焦點(diǎn)為F1、F2,過(guò)F1作x軸的垂線與該雙曲線相交,其中一個(gè)交點(diǎn)為M,則|
MF2
|=( 。
A.5
3
B.4
3
C.3
3
D.2
3
∵雙曲線
x2
3
-
y2
6
=1中a2=3,b2=6,
∴c2=a2+b2=9,
∴c=3,故左焦點(diǎn)F1(-3,0).
依題意,設(shè)M(-3,y0),則
y02
6
=
(-3)2
3
-1=2,
∴y0=±2
3
,故|MF1|=2
3

∵M(jìn)(-3,y0)為左支上的點(diǎn),
∴|MF2|-|MF1|=2
3
,
∴|MF2|=2
3
+|MF1|=4
3
,即|
MF2
|=4
3

故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知離心率為
3
2
的橢圓C1的頂點(diǎn)A1,A2恰好是雙曲線
x2
3
-y2=1
的左右焦點(diǎn),點(diǎn)P是橢圓上不同于A1,A2的任意一點(diǎn),設(shè)直線PA1,PA2的斜率分別為k1,k2
(Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)試判斷k1•k2的值是否與點(diǎn)P的位置有關(guān),并證明你的結(jié)論;
(Ⅲ)當(dāng)k1=
1
2
時(shí),圓C2:x2+y2-2mx=0被直線PA2截得弦長(zhǎng)為
4
5
5
,求實(shí)數(shù)m的值.
設(shè)計(jì)意圖:考察直線上兩點(diǎn)的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質(zhì)等知識(shí),考察學(xué)生用待定系數(shù)法求橢圓方程等解析幾何的基本思想與運(yùn)算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
6
+
y2
2
=1
和雙曲線
x2
3
-y2=1
的公共焦點(diǎn)分別為F1,F(xiàn)2,P是兩曲線的一個(gè)交點(diǎn),則cos∠F1PF2的值為( 。
A、
1
4
B、
1
3
C、
2
3
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
6
+
y2
2
=1與雙曲線
x2
3
-y2=1有公共焦點(diǎn)為F1,F(xiàn)2,P是兩條曲線的一個(gè)公共點(diǎn),則cos∠F1PF2的值等于( 。
A、
1
4
B、
1
3
C、
1
9
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌三模)設(shè)F1,F(xiàn)2是雙曲線
x2
3
-y2=1
的兩個(gè)焦點(diǎn),P在雙曲線上,當(dāng)△F1PF2的面積為2時(shí),
PF1
PF2
的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•河?xùn)|區(qū)二模)設(shè)雙曲線
x2
3
-
y2
6
=1
的一條準(zhǔn)線與拋物線y2=2px(p>0)的準(zhǔn)線重合,則此拋物線的方程為
y2=4x
y2=4x

查看答案和解析>>

同步練習(xí)冊(cè)答案