過點(diǎn)M(2,0)的直線l與拋物線y2=x交于A,B兩點(diǎn),則
OA
OB
的值為( 。
A.0B.1C.2D.3
設(shè)過點(diǎn)M(2,0)的直線l的方程為:x=ty+2,
A(x1,y1),B(x2,y2).
聯(lián)立
x=ty+2
y2=x
,得:y2-ty-2=0.
∴y1+y2=t,y1y2=-2.
x1x2=(ty1+2)(ty2+2)=t2y1y2+2t(y1+y2)+4
=-2t2+2t2+4=4.
OA
OB
=x1x2+y1y2=4-2=2.
故選:C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦點(diǎn)分別為F1、F2,過F1作直線交橢圓于P、Q兩點(diǎn),△F2PQ的周長為4
3

(1)若橢圓的離心率e=
3
3
,求橢圓的方程;
(2)若M為橢圓上一點(diǎn),
MF1
MF2
=1,求△MF1F2的面積最大時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知O為坐標(biāo)原點(diǎn),F(xiàn)是拋物線E:y2=4x的焦點(diǎn).
(Ⅰ)過F作直線l交拋物線E于P,Q兩點(diǎn),求
OP
OQ
的值;
(Ⅱ)過點(diǎn)T(t,0)作兩條互相垂直的直線分別交拋物線E于A,B,C,D四點(diǎn),且M,N分別為線段AB,CD的中點(diǎn),求△TMN的面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一條曲線C在y軸右側(cè),C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)設(shè)直線l交曲線C于A,B兩點(diǎn),線段AB的中點(diǎn)為D(2,-1),求直線l的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率e=
5
5
,過F1的直線交橢圓于M、N兩點(diǎn),且△MNF2周長為4
5

(Ⅰ)求橢圓E的方程;
(Ⅱ)已知過橢圓中心,且斜率為k(k≠0)的直線與橢圓交于A、B兩點(diǎn),P是線段AB的垂直平分線與橢圓E的一個交點(diǎn),若△APB的面積為
40
9
,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),且橢圓C的離心率e=
1
2
,F(xiàn)1也是拋物線C1:y2=-4x的焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)F2的直線l交橢圓C于D,E兩點(diǎn),且2
DF2
=
F2E
,點(diǎn)E關(guān)于x軸的對稱點(diǎn)為G,求直線GD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)P(1,1)作直線與雙曲線x2-
y2
2
=1
交于A、B兩點(diǎn),使點(diǎn)P為AB中點(diǎn),則這樣的直線( 。
A.存在一條,且方程為2x-y-1=0
B.存在無數(shù)條
C.存在兩條,方程為2x±(y+1)=0
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為1的點(diǎn)M到拋物線C焦點(diǎn)F的距離|MF|=2.
(1)試求拋物線C的標(biāo)準(zhǔn)方程;
(2)若直線l與拋物線C相交所得的弦的中點(diǎn)為(2,1),試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)M(
3
,0),橢圓
x2
4
+y2=1與直線y=k(x+
3
)交于點(diǎn)A、B,則△ABM的周長為( 。
A.4B.8C.12D.16

查看答案和解析>>

同步練習(xí)冊答案