分析 (1)通過(guò)利用當(dāng)n≥2時(shí)${S_n}={S_{n-1}}+{a_n}={S_{n-1}}+2\sqrt{S_n}-1$可知${S_{n-1}}={(\sqrt{S_n}-1)^2}$,進(jìn)而可知$\sqrt{S_n}-\sqrt{{S_{n-1}}}=1$,從而${S_n}={n^2}$,an=2n-1;
(2)通過(guò)(1)裂項(xiàng)可知$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}$,進(jìn)而并項(xiàng)相加、參數(shù)分離可將問(wèn)題轉(zhuǎn)化為λ≥$\frac{n}{2({n}^{2}+4n+4)}$=$\frac{1}{2}$•$\frac{1}{n+\frac{4}{n}+4}$對(duì)一切n∈N*恒成立,利用基本不等式可得結(jié)論.
解答 解:(1)∵正數(shù)列{an}的前n項(xiàng)和為Sn,且${a_n}=2\sqrt{S_n}-1$,
∴當(dāng)n≥2時(shí)${S_n}={S_{n-1}}+{a_n}={S_{n-1}}+2\sqrt{S_n}-1$,即${S_{n-1}}={(\sqrt{S_n}-1)^2}$,
因?yàn)镾n-1>0,所以$\sqrt{S_n}-\sqrt{{S_{n-1}}}=1$,
又因?yàn)?2\sqrt{a_1}={a_1}+1$,解得a1=1,
所以$\sqrt{S_n}=1+(n-1)×1=n$,即${S_n}={n^2}$,
所以an=2n-1;
(2)由(1)可知${b_n}=\frac{{{a_n}+3}}{2}=n+1$,
所以$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}$,
所以${T_n}=(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n+1}-\frac{1}{n+2})=\frac{1}{2}-\frac{1}{n+2}=\frac{n}{2n+4}$,
因?yàn)門(mén)n≤λbn+1對(duì)一切n∈N*恒成立,
所以$\frac{n}{2n+4}$≤λ(n+2),所以λ≥$\frac{n}{2({n}^{2}+4n+4)}$=$\frac{1}{2}$•$\frac{1}{n+\frac{4}{n}+4}$,
因?yàn)?n+\frac{4}{n}$≥2$\sqrt{n•\frac{4}{n}}$=4,當(dāng)且僅當(dāng)n=2時(shí)取等號(hào),所以λ≥$\frac{1}{16}$,
故實(shí)數(shù)λ的最小值為$\frac{1}{16}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查階差法,考查裂項(xiàng)相消法,考查基本不等式,對(duì)表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 2019 | C. | -2019 | D. | 2018×2019 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n=4時(shí)該命題不成立 | |
B. | n=6時(shí)該命題不成立 | |
C. | n為大于5的某個(gè)自然數(shù)時(shí)該命題成立 | |
D. | 以上答案均不對(duì) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com