正三棱柱ABC-A1B1C1中,AA1=AB,則異面直線AB1與BC所成的角的大小為
arccos
2
4
arccos
2
4
.(結(jié)果用反三角表示)
分析:由于BC∥B1C1,所以∠AB1C(或其補(bǔ)角)為異面直線AB1與BC所成的角的平面角.在△AB1C 中求解即可.
解答:解:∵BC∥B1C1,∴∠AB1C(或其補(bǔ)角)為異面直線AB1與BC所成的角的平面角.
設(shè)AA1=AB=1.則在△AB1C1中,AB1=
2
,BC=1,AC1=
2
,由余弦定理得cos∠AB1C=
2+1-2
2
×1
=
2
4
.∴∠AB1C=arccos
2
4

異面直線AB1與BC所成的角的大小為arccos
2
4

故答案為:arccos
2
4
點(diǎn)評:本題考查異面直線夾角的大小計(jì)算,利用定義轉(zhuǎn)化成平面角,是基本解法.找平行線是解決問題的一個(gè)重要技巧,一般的“遇到中點(diǎn)找中點(diǎn),平行線即可出現(xiàn)”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在正三棱柱ABC-A1 B1 C1中,AB=
AA13
=a,E,F(xiàn)分別是BB1,CC1上的點(diǎn)且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在 正三棱柱ABC-A1 B1 C1中,底面邊長為
2

(1)設(shè)側(cè)棱長為1,求證A B1⊥B C1
(2)設(shè)A B1與B C1成600角,求側(cè)棱長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1 B1 C1中,AA1=4,AB=2,M是AC的中點(diǎn),點(diǎn)N在AA1上,AN=
1
4

(1)求BC1與側(cè)面AC C1 A1所成角的正弦值;
(2)證明:MN⊥B C1;
(3)求二面角C-C1B-M的平面角的正弦值,若在△A1B1C1中,
C1E
=
1
3
EA1
,
C1F
=
1
4
FB1
,
C1H
=x
C1A1
+y
C1B1
,求x+y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖:在正三棱柱ABC-A1 B1 C1中,AB=數(shù)學(xué)公式=a,E,F(xiàn)分別是BB1,CC1上的點(diǎn)且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:1996年全國統(tǒng)一高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖:在正三棱柱ABC-A1 B1 C1中,AB==a,E,F(xiàn)分別是BB1,CC1上的點(diǎn)且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

同步練習(xí)冊答案