A. | $\frac{1}{8n}$ | B. | $\frac{n}{n+1}$ | C. | $\frac{n}{4n+4}$ | D. | $\frac{n}{4n+1}$ |
分析 函數(shù)g(x)=f(x)-knx 的零點個數(shù)可化為函數(shù)f(x)與y=knx的圖象的交點的個數(shù);作函數(shù)f(x)與y=knx的圖象,結(jié)合圖象可得y=knx的圖象與y=$\sqrt{1-(x-2n-1)^{2}}$的圖象相切,從而可得$\frac{1}{2}$$\frac{-2(x-2n-1)}{\sqrt{1-(x-2n-1)^{2}}}$=$\frac{1}{x}$$\sqrt{1-(x-2n-1)^{2}}$,從而解得kn=$\frac{1}{x}$$\sqrt{1-(x-2n-1)^{2}}$=$\frac{1}{2\sqrt{n(n+1)}}$,從而可得kn2=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),從而利用裂項求和法解得.
解答 解:函數(shù)g(x)=f(x)-knx 的零點個數(shù)可化為
函數(shù)f(x)與y=knx的圖象的交點的個數(shù);
作函數(shù)f(x)與y=knx的圖象如下,
,
∵關(guān)于x的函數(shù)g(x)=f(x)-knx 的零點個數(shù)恰好為2n+1個,
∴y=knx的圖象與y=$\sqrt{1-(x-2n-1)^{2}}$的圖象相切,
∴$\frac{1}{2}$$\frac{-2(x-2n-1)}{\sqrt{1-(x-2n-1)^{2}}}$=$\frac{1}{x}$$\sqrt{1-(x-2n-1)^{2}}$,
∴x=$\frac{4n(n+1)}{2n+1}$,
∴kn=$\frac{1}{x}$$\sqrt{1-(x-2n-1)^{2}}$
=$\frac{2n+1}{4n(n+1)}$$\sqrt{1-(\frac{4n(n+1)}{2n+1}-2n-1)^{2}}$
=$\frac{1}{2\sqrt{n(n+1)}}$,
∴kn2=$\frac{1}{4n(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
∴k12+k22+…+kn2
=$\frac{1}{4}$(1-$\frac{1}{2}$)+$\frac{1}{4}$($\frac{1}{2}$-$\frac{1}{3}$)+$\frac{1}{4}$($\frac{1}{3}$-$\frac{1}{4}$)+…+$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$)
=$\frac{1}{4}$(1-$\frac{1}{n+1}$)=$\frac{n}{4(n+1)}$,
故選C.
點評 本題考查了導數(shù)的綜合應用及數(shù)形結(jié)合的思想方法應用,同時考查了數(shù)列的性質(zhì)與應用及裂項求和法的應用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{10}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com