16.函數(shù)y=$\frac{{e}^{x}}{x}$在(0,2)上的最小值是(  )
A.$\frac{e}{2}$B.$\frac{\sqrt{e}}{2e}$C.$\frac{2e}{3}$D.e

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可.

解答 解:y′=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
令y′>0,解得:x>1,
令y′<0,解得:x<1,
∴函數(shù)在(0,1)遞減,在(1,2)遞增,
∴x=1時(shí),y最小,最小值是e,
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=x2+2(m-1)x+3在區(qū)間(-∞,-2)上是單調(diào)遞減的,則m的取值范圍是(  )
A.m≤3B.m≥3C.m≤-3D.m≥-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.三元一次方程x+y+z=13的非負(fù)整數(shù)解的個(gè)數(shù)有105.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若存在X滿足不等式|X-4|+|X-3|<a,則a的取值范圍是( 。
A.a≥1B.a>1C.a≤1D.a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=-$\sqrt{3}$sin2x+sinxcosx+$\frac{\sqrt{3}}{2}$,
(1)求函數(shù)f(x)的最小正周期;
(2)x∈[0,$\frac{π}{2}$]求函數(shù)f(x)的值域;
(3)若f($\frac{α}{2}$)=$\frac{1}{4}$,α∈(0,π),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(I)當(dāng)a=0時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
( II)討論函數(shù)f(x)的單調(diào)性;
(III)當(dāng)a=l時(shí),對(duì)?m,n∈[-3,0],|f(m)-f(n)|≤M恒成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知曲線C1:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}$(t為參數(shù)),曲線C2:$\frac{x^2}{9}$+$\frac{y^2}{2}$=1.
(Ⅰ)寫出C1的普通方程與C2的參數(shù)方程;
(Ⅱ)過坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程(以α為參數(shù)),并指出它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若sinα=-$\frac{5}{13}$,且α為第四象限角,則tanα的值等于(  )
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.-$\frac{5}{12}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.y=$\sqrt{\frac{x-1}{2x}}$-log2(4-x2)的定義域是(-2,0)∪[1,2).

查看答案和解析>>

同步練習(xí)冊答案