分析 (1)利用兩角和與差的余弦函數(shù)公式化簡(jiǎn)已知等式左邊的第一項(xiàng),移項(xiàng)合并后再利用兩角和與差的余弦函數(shù)公式得出cos(B+C)的值,將cosA用三角形的內(nèi)角和定理及誘導(dǎo)公式變形后,將cos(B+C)的值代入即可求出cosA的值;
(2)利用兩角和與差的正弦公式、輔助角公式將已知等式變形,結(jié)合A的取值范圍來(lái)求A的值即可.
解答 解:(1)3cos(B-C)-1=6cosBcosC,
化簡(jiǎn)得:3(cosBcosC+sinBsinC)-1=6cosBcosC,
變形得:3(cosBcosC-sinBsinC)=-1,
即cos(B+C)=-\frac{1}{3},
則cosA=-cos(B+C)=\frac{1}{3};
(2)sin(A+\frac{π}{6})=2cosA,展開(kāi)得\frac{\sqrt{3}}{2}sinA-\frac{3}{2}cosA=0,
即\sqrt{3}sin(A-\frac{π}{3})=0.
因?yàn)?<A<π,所以A=\frac{π}{3}.
點(diǎn)評(píng) 此題考查了余弦定理,兩角和與差的余弦函數(shù)公式,誘導(dǎo)公式,熟練掌握公式及定理是解本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | π | C. | \frac{π}{2} | D. | \frac{π}{4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,\frac{17}{4}] | B. | (2,\frac{17}{4}]∪(-∞,-2) | C. | (2,8) | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條 件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | \frac{1}{5} | B. | \frac{3\sqrt{10}}{10} | C. | \frac{\sqrt{10}}{10} | D. | \frac{3}{5} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com