3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{{x}^{2}-6x+4,x≥0}\end{array}\right.$,若關(guān)于x的方程f2(x)-bf(x)+1=0有8個(gè)不同根,則實(shí)數(shù)b的取值范圍是(  )
A.(2,$\frac{17}{4}$]B.(2,$\frac{17}{4}$]∪(-∞,-2)C.(2,8)D.(-∞,-2)∪(2,+∞)

分析 作函數(shù)f(x)的圖象,從而可得方程x2-bx+1=0有2個(gè)不同的正解,且在(0,4]上,從而解得.

解答 解:作函數(shù)f(x)的圖象如右圖,

∵關(guān)于x的函數(shù)y=f2(x)-bf(x)+1有8個(gè)不同的零點(diǎn),
∴方程x2-bx+1=0有2個(gè)不同的正解,且在(0,4]上;
∴$\left\{\begin{array}{l}{\frac{2}>0}\\{△{=b}^{2}-4>0}\\{16-4b+1≥0}\end{array}\right.$,
解得,2<b≤$\frac{17}{4}$;
故選:A.

點(diǎn)評(píng) 本題考查了數(shù)形結(jié)合的思想應(yīng)用及分段函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足Sn=2an-1(n∈N*),{bn}是等差數(shù)列,且b1=a1,b4=a3
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cn=$\frac{1}{a_n}-\frac{2}{{{b_n}{b_{n+1}}}}({n∈{N^*}})$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)M(-1,0),N(1,0),曲線E上任意一點(diǎn)到M的距離均是到點(diǎn)N距離的$\sqrt{3}$倍.
(1)求曲線E的方程;
(2)已知m≠0,設(shè)直線l1:x-my-1=0交曲線E于A,C兩點(diǎn),直線l2:mx+y-m=0交曲線E于B,D兩點(diǎn),C,D兩點(diǎn)均在x軸下方,求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.橢圓$\frac{x^2}{16}+\frac{y^2}{3}=1$的左右焦點(diǎn)分別為F1,F(xiàn)2,一條直線經(jīng)過F1與橢圓交于A,B兩點(diǎn),則△ABF2 的周長為( 。
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2klnx,g(x)=x2-2kx(k∈R)
(1)設(shè)h(x)=f(x)-g(x),試討論函數(shù)h(x)的單調(diào)性
(2)設(shè)k>0,若函數(shù)y=f(x)的圖象與y=g(x)的圖象在區(qū)間(0,+∞)上有唯一交點(diǎn),試求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知A,B,C是△ABC的三個(gè)內(nèi)角.
(1)3cos(B-C)-1=6cosBcosC,求cosA的值;
(2)若sin(A+$\frac{π}{6}$)=2cosA,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)集合A={x||x-2|<1,x∈R},集合B=Z,則A∩B={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|2<x<4},B={x||x|≥1},則A∩B=( 。
A.(1,+∞)B.(2,4)C.(-∞,-1)∪(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用秦九韶算法計(jì)算多項(xiàng)式f(x)=10+25x-8x2+x4+6x5+2x6在x=-4時(shí)的值時(shí),v3的值為( 。
A.-144B.-36C.-57D.34

查看答案和解析>>

同步練習(xí)冊(cè)答案