給定區(qū)間,定義其區(qū)間長(zhǎng)度為.設(shè)是一次函數(shù),且滿足,若不等式的解集形成的區(qū)間長(zhǎng)度為,則實(shí)數(shù)的所有可能取值為       

 

【答案】

3或7

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天河區(qū)三模)設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為f'(x).如果存在實(shí)數(shù)a和函數(shù)h(x),其中h(x)對(duì)任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).
(1)設(shè)函數(shù)f(x)=Inx+
b+2x+1
(x>1)
,其中b為實(shí)數(shù).
(i)求證:函數(shù)f(x)具有性質(zhì)P(b);
(ii)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實(shí)數(shù),a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.

    對(duì)任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長(zhǎng)度的方法.

(1)證明對(duì)任意的x1、x2∈(0,1),x1<x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間;若f(x1)≤f(x2),則(x1,1)為含峰區(qū)間;

(2)對(duì)給定的r(0<r<0.5),證明存在x1、x2∈(0,1),滿足x2-x1≥2r,使得由(1)所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r;

(3)選取x1、x2∈(0,1),x1<x2,由(1)可確定含峰區(qū)間為(0,x2)或(x1,1),在所得的含峰區(qū)間內(nèi)選取x3,由x3與x1或x3與x2類似地可確定一個(gè)新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,x2)的情況下,試確定x1、x2、x3的值,滿足兩兩之差的絕對(duì)值不小于0.02,且使得新的含峰區(qū)間的長(zhǎng)度縮短到0.34.

(區(qū)間長(zhǎng)度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定區(qū)間,定義其區(qū)間長(zhǎng)度為.設(shè)是一次函數(shù),且滿足,,若不等式的解集形成的區(qū)間長(zhǎng)度為,則實(shí)數(shù)的所有可能取值為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省鹽城中學(xué)高二下學(xué)期期末考試數(shù)學(xué)(文) 題型:填空題

給定區(qū)間,定義其區(qū)間長(zhǎng)度為.設(shè)是一次函數(shù),且滿足,,若不等式的解集形成的區(qū)間長(zhǎng)度為,則實(shí)數(shù)的所有可能取值為       

查看答案和解析>>

同步練習(xí)冊(cè)答案