13.下列函數(shù)中,值域是(0,+∞)的是(  )
A.y=($\frac{1}{3}$)1-xB.y=x2C.y=5${\;}^{\frac{1}{2-x}}$D.y=$\sqrt{1-{2}^{x}}$

分析 根據(jù)指數(shù)函數(shù)的值域,二次函數(shù)的值域,以及反比例函數(shù)的值域,和被開方數(shù)大于等于0,以及不等式的性質(zhì)便可求出每個(gè)選項(xiàng)函數(shù)的值域,從而找出正確選項(xiàng).

解答 解:A.對任意x∈R,$(\frac{1}{3})^{1-x}>0$;
∴該函數(shù)值域?yàn)椋?,+∞),∴該選項(xiàng)正確;
B.y=x2≥0;
∴該函數(shù)值域?yàn)閇0,+∞),∴該選項(xiàng)錯(cuò)誤;
C.∵$\frac{1}{2-x}≠0$;
∴${5}^{\frac{1}{2-x}}≠1$;
∴該函數(shù)的值域不是(0,+∞),∴該選項(xiàng)錯(cuò)誤;
D.$\left\{\begin{array}{l}{{2}^{x}>0}\\{1-{2}^{x}≥0}\end{array}\right.$;
∴0≤1-2x<1;
∴0≤y<1;
即該函數(shù)的值域?yàn)閇0,1),不是(0,+∞),∴該選項(xiàng)錯(cuò)誤.
故選:A.

點(diǎn)評 考查函數(shù)值域的概念及求法,指數(shù)函數(shù)、二次函數(shù),及反比例函數(shù)的值域,以及被開方數(shù)應(yīng)滿足大于等于0,不等式的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$\overrightarrow a,\overrightarrow b$是單位向量,$\overrightarrow a•\overrightarrow b=0$,若向量c滿足$|{\overrightarrow c-\overrightarrow a+\overrightarrow b}$|=1,則|$|{\overrightarrow c-\overrightarrow b}$|的取值范圍是( 。
A.$[{\sqrt{2}-1,\sqrt{2}+1}]$B.$[{1,\sqrt{2}+1}]$C.[0,2]D.$[{\sqrt{5}-1,\sqrt{5}+1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,$\overrightarrow{a}$在$\overrightarrow{a}$+$\overrightarrow$上的投影等于( 。
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.4+2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow{a}$,滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,且對一切實(shí)數(shù)x,|$\overrightarrow{a}$+x$\overrightarrow$|≥|$\overrightarrow{a}$+$\overrightarrow$|恒成立,則$\overrightarrow{a}$,$\overrightarrow$的夾角的大小為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=|x2-2ax+b|(x∈R),給出下列命題:
①?a∈R,使f(x)為偶函數(shù);
②若f(0)=f(2),則f(x)的圖象關(guān)于x=1對稱;
③若a2-b≤0,則f(x)在區(qū)間[a,+∞)上是增函數(shù);
④若a2-b-2>0,則函數(shù)h(x)=f(x)-2有2個(gè)零點(diǎn).
其中正確命題的序號為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.i是虛數(shù)單位,i2015+i2016=1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列說法正確的是(  )
A.圖象連續(xù)的函數(shù)f(x)在區(qū)間(a,b)上一定存在最值
B.函數(shù)的極小值可能大于極大值
C.函數(shù)的最小值一定是極小值
D.函數(shù)的極小值一定是最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x+alnx,在x=1處的切線與直線x+2y=0垂直,函數(shù)g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)求實(shí)數(shù)a的值;
(2)設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個(gè)極值點(diǎn),記t=$\frac{x_1}{x_2}$,若b≥$\frac{13}{3}$,
①t的取值范圍;
②求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某中學(xué)舉行了一次“環(huán)保知識競賽”活動,為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出如圖所示的頻率分布直方圖,但由于不慎丟失了部分?jǐn)?shù)據(jù).已知得分在[50,60)的有8人,在[90,100)的有2人,由此推測頻率分布直方圖中的x=( 。
A.0.04B.0.03C.0.02D.0.01

查看答案和解析>>

同步練習(xí)冊答案