設(shè)Sn=(n∈N+),求證:對(duì)于正整數(shù)m,n且m>n,都有|Sm-Sn|<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:福建省漳州一中2013屆高三5月月考數(shù)學(xué)文試題 題型:044
等差數(shù)列{an}的公差為-2,且a1,a3,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:天津市新人教A版數(shù)學(xué)2012屆高三單元測(cè)試13:等差數(shù)列 新人教A版 題型:044
已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且a2、a5、a14分別是一個(gè)等比數(shù)列的第二項(xiàng)、第三項(xiàng)、第四項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(n∈N*),Sn=b1+b2+…+bn,求Sn
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆江西省上饒市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)數(shù)列{}的前n項(xiàng)和為Sn(n∈N?),關(guān)于數(shù)列{}有下列四個(gè)命題:
(1)若{}既是等差數(shù)列又是等比數(shù)列,則an=an+1(n∈N*);
(2)若Sn=An2+Bn(A,B∈R,A、B為常數(shù)),則{}是等差數(shù)列;
(3)若Sn=1-(-1)n,則{}是等比數(shù)列;
(4)若{}是等比數(shù)列,則Sm,S2m-Sm,S3m-S2m(m∈N*)也成等比數(shù)列;其中正確的命題的個(gè)數(shù)是
A.4 B.3 C.2 D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com